Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Carbazole Derivatives on H2O2-Induced Cell Death of Neuro2a Cells
2.2. Effects of Carbazole Derivatives on Neuronal Differentiation of Neuro2a Cells
2.3. Effects of Carbazole 13 on H2O2-Induced Cell Death of Neuro2a Cells
2.4. Signaling Pathway Involved in Compound 13-Induced Neurite Outgrowth from Neuro2a Cells
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Cell Culture
3.3. Determination of Cell Viability
3.4. Assessment of Neurite Outgrowth
3.5. Immunoblot Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Knölker, H.J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2002, 102, 4303–4427. [Google Scholar] [CrossRef] [PubMed]
- Ramsewak, R.S.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L.; Nitiss, J.L. Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem. 1999, 47, 444–447. [Google Scholar] [CrossRef]
- Hieda, Y.; Choshi, T.; Uchida, Y.; Fujioka, H.; Fujii, S.; Hibino, S. Total synthesis of (±)-carquinostatin A, and asymmetric total synthesis of (R)-(−)-carquinostatin a and (S)-(+)-carquinostatin A. Chem. Pharm. Bull. 2012, 60, 1522–1530. [Google Scholar] [CrossRef]
- Hieda, Y.; Choshi, T.; Fujioka, H.; Hibino, S. Total synthesis of the neuronal cell-protecting carbazole alkaloids. Carbazomadurin A and (S)-(+)-carbazomadurin B. Eur. J. Org. Chem. 2013, 32, 7391–7401. [Google Scholar] [CrossRef]
- Hieda, Y.; Anraku, M.; Choshi, T.; Tomida, H.; Fujioka, H.; Hatae, N.; Hori, O.; Hirose, J.; Hibino, S. Antioxidant effects of the highly-substituted carbazole alkaloids and their related carbazoles. Bioorg. Med. Chem. Lett. 2014, 24, 3530–3533. [Google Scholar] [CrossRef] [PubMed]
- Hieda, Y.; Hatae, N.; Anraku, M.; Matsuura, N.; Uemura, K.; Hibino, S.; Choshi, T.; Tomida, H.; Hori, O.; Fujioka, H. Antioxidant effects of the hydroxy groups in the simple phenolic carbazoles. Heterocycles 2016, 92, 120–132. [Google Scholar]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Shukla, V.; Mishra, S.K.; Pant, H.C. Oxidative stress in neurodegeneration. Adv. Pharmacol. Sci. 2011, 2011. [Google Scholar] [CrossRef]
- Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003, 15, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Steiner, N.; Balez, R.; Karunaweera, N.; Lind, J.M.; Münch, G.; Ooi, L. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem. Int. 2016, 95, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, H.; Venkataramana, M.; Jalali Ghassam, B.; Chandra Nayaka, S.; Nataraju, A.; Geetha, N.P.; Prakash, H.S. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sci. 2014, 113, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kanno, S.; Ishikawa, M.; Takayanagi, M.; Takayanagi, Y.; Sasaki, K. Characterization of hydrogen peroxide-induced apoptosis in mouse primary cultured hepatocytes. Biol. Pharm. Bull. 2000, 23, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Denisova, N.A.; Cantuti-Castelvetri, I.; Hassan, W.N.; Paulson, K.E.; Joseph, J.A. Role of membrane lipids in regulation of vulnerability to oxidative stress in PC12 cells: Implication for aging. Free Radic. Biol. Med. 2001, 30, 671–678. [Google Scholar] [CrossRef]
- Matta, S.G.; Yorke, G.; Roisen, F.J. Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma. Dev. Brain Res. 1986, 27, 243–252. [Google Scholar] [CrossRef]
- Salto, R.; Vílchez, J.D.; Girón, M.D.; Cabrera, E.; Campos, N.; Manzano, M.; Rueda, R.; López-Pedrosa, J.M. β-Hydroxy-β-methylbutyrate (HMB) promotes neurite outgrowth in neuro2a cells. PLoS ONE 2015, 10, e0135614. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, M.L.; An, H.K.; Kim, K.S.; Ko, M.J.; Kim, C.M.; Choi, Y.W.; Lee, Y.C. Emodin induces neurite outgrowth through PI3K/Akt/GSK-3β-mediated signaling pathways in neuro2a cells. Neurosci. Lett. 2015, 19, 101–117. [Google Scholar] [CrossRef]
- Nagase, H.; Omae, N.; Omori, A.; Nakagawasai, O.; Tadano, T.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Yamakuni, T.; Ohizumi, Y. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities. Biochem. Biophys. Res. Commun. 2005, 337, 1330–1336. [Google Scholar] [CrossRef]
- Yang, Y.J.; Lee, H.J.; Choi, D.H.; Huang, H.S.; Lim, S.C.; Lee, M.K. Effect of scoparone on neurite outgrowth in PC12 cells. Neurosci. Lett. 2008, 440, 14–18. [Google Scholar] [CrossRef]
- Nagahara, Y.; Suzuki, E.; Sekine, Y.; Uchiro, H.; Yoshimi, Y.; Shinomiya, T.; Ikekita, M. SUTAF, a novel β-methoxyacrylate derivative, promotes neurite outgrowth with extracellular signal-regulated kinase and c-jun N-terminal kinase activation. Eur. J. Pharmacol. 2012, 694, 53–59. [Google Scholar] [CrossRef]
- Nishimoto, T.; Kimura, R.; Matsumoto, A.; Sugimoto, H. Streptozotocin induces neurite outgrowth via PI3K-Akt and glycogen synthase kinase 3β in neuro2a cells. Cell. Mol. Biol. (Noisy-le-grand) 2016, 62, 74–78. [Google Scholar]
- Park, H.J.; Kwon, H.; Lee, S.; Jung, J.W.; Ryu, J.H.; Jang, D.S.; Lee, Y.C.; Kim, D.H. Echinocystic acid facilitates neurite outgrowth in neuroblastoma Neuro2a cells and enhances spatial memory in aged mice. Biol. Pharm. Bull. 2017, 40, 1724–1729. [Google Scholar] [CrossRef]
- Samuels, I.S.; Karlo, J.C.; Faruzzi, A.N.; Pickering, K.; Herrup, K.; Sweatt, J.D.; Saitta, S.C.; Landreth, G.E. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J. Neurosci. 2008, 28, 6983–6995. [Google Scholar] [CrossRef]
- Spencer, J.P.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys. 2009, 492, 1–9. [Google Scholar] [CrossRef]
- Kretz, A.; Happold, C.J.; Marticke, J.K.; Isenmann, S. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol. Cell. Neurosci. 2005, 29, 569–579. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.M.; Meinkoth, J.; Pittman, R.N. Akt regulates cell survival and apoptosis at a postmitochondrial level. J. Cell. Biol. 2000, 151, 483–494. [Google Scholar] [CrossRef]
- Ferreiro, E.; Baldeiras, I.; Ferreira, I.L.; Costa, R.O.; Rego, A.C.; Pereira, C.F.; Oliveira, C.R. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: From pathogenesis to biomarkers. Int. J. Cell. Biol. 2012, 2012, 735206. [Google Scholar] [CrossRef]
- Read, D.E.; Gorman, A.M. Involvement of Akt in neurite outgrowth. Cell. Mol. Life Sci. 2009, 66, 2975–2984. [Google Scholar] [CrossRef]
- More, S.V.; Koppula, S.; Kim, I.-S.; Kumar, H.; Kim, B.-W.; Choi, D.-K. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 2012, 17, 6728–6753. [Google Scholar] [CrossRef]
- Kim, J.H.; Ha, H.C.; Lee, M.S.; Kang, J.I.; Kim, H.S.; Lee, S.Y.; Pyun, K.H.; Shim, I. Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats. Biol. Pharm. Bull. 2007, 30, 708–714. [Google Scholar] [CrossRef]
- Kubota, K.; Fukue, H.; Sato, H.; Hashimoto, K.; Fujikane, A.; Moriyama, H.; Watanabe, T.; Katsurabayashi, S.; Kainuma, M.; Iwasaki, K. The traditional Japanese herbal medicine Hachimijiogan elicits neurite outgrowth effects in PC12 cells and improves cognitive in AD model rats via phosphorylation of CREB. Front. Pharmacol. 2017, 8, 850. [Google Scholar] [CrossRef]
- Liu, X.; Chan, C.B.; Jang, S.W.; Pradoldej, S.; Huang, J.; He, K.; Phun, L.H.; France, S.; Xiao, G.; Jia, Y.; et al. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem. 2010, 53, 8274–8286. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kosaraju, J.; Zhou, W.; Tam, K.Y. SLOH, a carbazole-based fluorophore, mitigates neuropathology and behavioral impairment in the triple-transgenic mouse model of Alzheimer’s disease. Neuropharmacology 2018, 131, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Elmabruk, A.; Das, B.; Yedlapudi, D.; Xu, L.; Antonio, T.; Reith, M.E.A.; Dutta, A.K. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson’s Disease. ACS Chem. Neurosci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Tesla, R.; Wolf, H.P.; Xu, P.; Drawbridge, J.; Estill, S.J.; Huntington, P.; McDaniel, L.; Knobbe, W.; Burket, A.; Tran, S.; et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 2012, 109, 17016–17021. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Song, X.; Li, C.; Ma, J.; Chu, S.; Liu, D.; Ren, Q.; Li, Y.; Chen, N.; Zhang, D. Pyrano[3,2-a]carbazole alkaloids as effective agents against ischemic stroke in vitro and in vivo. Eur. J. Med. Chem. 2018, 143, 438–448. [Google Scholar] [CrossRef]
- Blaya, M.O.; Wasserman, J.M.; Pieper, A.A.; Sick, T.J.; Bramlett, H.M.; Dietrich, W.D. Neurotherapeutic capacity of P7C3 agents for the treatment of traumatic brain injury. Neuropharmacology 2019, 145(Pt B), 268–282. [Google Scholar] [CrossRef]
- Choshi, T.; Sada, T.; Fujimoto, H.; Nagayama, C.; Sugino, E.; Hibino, S. Total syntheses of carazostatin, hyellazole, and carbazoquinocins B-F. J. Org. Chem. 1997, 62, 2535–2543. [Google Scholar] [CrossRef]
- Choshi, T.; Uchida, Y.; Kubota, Y.; Nobuhiro, J.; Takeshita, M.; Hatano, T.; Hibino, S. Lipase-catalyzed asymmetric synthesis of desprenyl-carquinostatin A and descycloavandulyl-lavanduquinocin. Chem. Pharm. Bull. 2007, 55, 1060–1064. [Google Scholar] [CrossRef]
- Furukawa, Y.; Watanabe, S.; Okuyama, S.; Amakura, Y.; Yoshimura, M.; Yoshida, T.; Nakajima, M. Effect of citrus polymethoxyfavones on neuritogenesis in neuroblastoma cells. Biointerface Res. Appl. Chem. 2012, 2, 432–437. [Google Scholar]
- Okada, M.; Makino, A.; Nakajima, M.; Okuyama, S.; Furukawa, S.; Furukawa, Y. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. Int. J. Mol. Sci. 2010, 11, 4114–4123. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–22 are available from the author T. Choshi. |
Compounds | 0.3 μM | 0.5 μM | 1.0 μM | 3.0 μM | 5.0 μM |
---|---|---|---|---|---|
1 | − | cell death | |||
2 | − | cell death | |||
3 | − | − | |||
4 | ± | cell death | |||
5 | ± | − | |||
6 | ± | ± | |||
7 | − | − | |||
8 | ± | ± | + | + | ± |
9 | ± | − | |||
10 | ± | − | |||
11 | − | − | |||
12 | + | + | cell death | ||
13 | + | + | + | + | + |
14 | − | − | |||
15 | − | − | |||
16 | − | − | |||
17 | − | − | |||
18 | ± | − | |||
19 | ± | ||||
20 | ± | ± | |||
21 | − | − | |||
22 | − | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, Y.; Sawamoto, A.; Yamaoka, M.; Nakaya, M.; Hieda, Y.; Choshi, T.; Hatae, N.; Okuyama, S.; Nakajima, M.; Hibino, S. Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells. Molecules 2019, 24, 1366. https://doi.org/10.3390/molecules24071366
Furukawa Y, Sawamoto A, Yamaoka M, Nakaya M, Hieda Y, Choshi T, Hatae N, Okuyama S, Nakajima M, Hibino S. Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells. Molecules. 2019; 24(7):1366. https://doi.org/10.3390/molecules24071366
Chicago/Turabian StyleFurukawa, Yoshiko, Atsushi Sawamoto, Mizuki Yamaoka, Makiko Nakaya, Yuhzo Hieda, Tominari Choshi, Noriyuki Hatae, Satoshi Okuyama, Mitsunari Nakajima, and Satoshi Hibino. 2019. "Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells" Molecules 24, no. 7: 1366. https://doi.org/10.3390/molecules24071366
APA StyleFurukawa, Y., Sawamoto, A., Yamaoka, M., Nakaya, M., Hieda, Y., Choshi, T., Hatae, N., Okuyama, S., Nakajima, M., & Hibino, S. (2019). Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells. Molecules, 24(7), 1366. https://doi.org/10.3390/molecules24071366