Curcumin: Total-Scale Analysis of the Scientific Literature
Abstract
:1. Introduction
2. Materials and Methods
Data Extraction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jayaprakasha, G.; Rao, L.J.M.; Sakariah, K. Chemistry and biological activities of C. longa. Trends Food Sci. Technol. 2005, 16, 533–548. [Google Scholar] [CrossRef]
- Lee, W.-H.; Loo, C.-Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, 11, 338–378. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003, 23, 363–398. [Google Scholar]
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Oxid. Med. Cell. Longev. 2019, 2019, 8278454. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef]
- Cole, G.; Yang, F.; Lim, G.; Cummings, J.; Masterman, D.; Frautschy, S. A rationale for curcuminoids for the prevention or treatment of Alzheimer’s disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents 2003, 3, 15–25. [Google Scholar] [CrossRef]
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res. 2005, 2, 131–136. [Google Scholar] [CrossRef]
- Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci. 2018, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.; Torti, S. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Gescher, A.; Steward, W. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef]
- Yeung, A.W.K. Sex differences in brain responses to food stimuli: A meta-analysis on neuroimaging studies. Obes. Rev. 2018, 19, 1110–1115. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Basic taste processing recruits bilateral anteroventral and middle dorsal insulae: An activation likelihood estimation meta-analysis of fMRI studies. Brain Behav. 2017, 7, e00655. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Brain responses to stimuli mimicking dental treatment among non-phobic individuals: A meta-analysis. Oral Dis. 2017. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Affective value, intensity and quality of liquid tastants/food discernment in the human brain: An activation likelihood estimation meta-analysis. Neuroimage 2018, 169, 189–199. [Google Scholar] [CrossRef]
- Sahebkar, A.; Cicero, A.F.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res. 2016, 107, 234–242. [Google Scholar] [CrossRef]
- Daily, J.W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. Food 2016, 19, 717–729. [Google Scholar] [CrossRef]
- Sahebkar, A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin. Nutr. 2014, 33, 406–414. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Heinrich, M.; Atanasov, A.G. Ethnopharmacology—A Bibliometric Analysis of a Field of Research Meandering Between Medicine and Food Science? Front. Pharmacol. 2018, 9, 215. [Google Scholar] [CrossRef]
- Yeung, A.W.K. Bibliometric study on functional magnetic resonance imaging literature (1995–2017) concerning chemosensory perception. Chemosens. Percept. 2018, 11, 42–50. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; Atanasov, A.G. When neuroscience meets pharmacology: A neuropharmacology literature analysis. Front. Neurosci. 2018, 12, 852. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Mocan, A.; Atanasov, A.G. Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chem. 2018, 269, 455–465. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; El-Demerdash, A.; Berindan-Neagoe, I.; Atanasov, A.G.; Ho, Y.-S. Molecular Responses of Cancers by Natural Products: Modifications of Autophagy Revealed by Literature Analysis. Crit. Rev. Oncog. 2018, 23, 347–370. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Patil, T.; Srinivasan, M. Hypocholesteremic effect of curcumin in induced hypercholesteremic rats. Indian J. Exp. Biol. 1971, 9, 167–169. [Google Scholar]
- Rao, D.S.; Sekhara, N.C.; Satyanarayana, M.; Srinivasan, M. Effect of curcumin on serum and liver cholesterol levels in the rat. J. Nutr. 1970, 100, 1307–1315. [Google Scholar] [CrossRef]
- Bayet-Robert, M.; Morvan, D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS ONE 2013, 8, e57971. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhang, C.-J.; Wong, Y.K.; Lim, T.K.; Hua, Z.-C.; Liu, B.; Tannenbaum, S.R.; Shen, H.-M.; Lin, Q. In situ proteomic profiling of curcumin targets in HCT116 colon cancer cell line. Sci. Rep. 2016, 6, 22146. [Google Scholar] [CrossRef]
- Masoumi, A.; Goldenson, B.; Ghirmai, S.; Avagyan, H.; Zaghi, J.; Abel, K.; Zheng, X.; Espinosa-Jeffrey, A.; Mahanian, M.; Liu, P.T. 1α, 25-dihydroxyvitamin D 3 Interacts with Curcuminoids to Stimulate Amyloid-β Clearance by Macrophages of Alzheimer’s Disease Patients. J. Alzheimers Dis. 2009, 17, 703–717. [Google Scholar] [CrossRef]
- Karlstetter, M.; Lippe, E.; Walczak, Y.; Moehle, C.; Aslanidis, A.; Mirza, M.; Langmann, T. Curcumin is a potent modulator of microglial gene expression and migration. J. Neuroinflamm. 2011, 8, 125. [Google Scholar] [CrossRef]
- Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847–6854. [Google Scholar] [CrossRef]
- Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008, 14, 4491–4499. [Google Scholar] [CrossRef]
- Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 1999, 18, 6013–6020. [Google Scholar] [CrossRef] [Green Version]
- Brouet, I.; Ohshima, H. Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Biophys. Res. Commun. 1995, 206, 533–540. [Google Scholar] [CrossRef]
- Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.; Nair, S.; Tamura, H.; Jayakumar, R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym. 2011, 83, 452–461. [Google Scholar] [CrossRef]
- Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 2010, 6, 153–160. [Google Scholar] [CrossRef]
- Surh, Y.-J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 1999, 428, 305–327. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. The Changing Landscape of Neuroscience Research, 2006–2015: A Bibliometric Study. Front. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef]
- Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; et al. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res. Ther. 2012, 4, 43. [Google Scholar] [CrossRef]
- Kurd, S.K.; Smith, N.; VanVoorhees, A.; Troxel, A.B.; Badmaev, V.; Seykora, J.T.; Gelfand, J.M. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. J. Am. Acad. Dermatol. 2008, 58, 625–631. [Google Scholar] [CrossRef]
- Chainani-Wu, N.; Silverman, S., Jr.; Reingold, A.; Bostrom, A.; Mc Culloch, C.; Lozada-Nur, F.; Weintraub, J. A randomized, placebo-controlled, double-blind clinical trial of curcuminoids in oral lichen planus. Phytomedicine 2007, 14, 437–446. [Google Scholar] [CrossRef]
- Panahi, Y.; Rahimnia, A.R.; Sharafi, M.; Alishiri, G.; Saburi, A.; Sahebkar, A. Curcuminoid treatment for knee osteoarthritis: A randomized double-blind placebo-controlled trial. Phytother. Res. 2014, 28, 1625–1631. [Google Scholar] [CrossRef]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother. 2016, 82, 578–582. [Google Scholar] [CrossRef]
- Ganjali, S.; Sahebkar, A.; Mahdipour, E.; Jamialahmadi, K.; Torabi, S.; Akhlaghi, S.; Ferns, G.; Parizadeh, S.M.R.; Ghayour-Mobarhan, M. Investigation of the effects of curcumin on serum cytokines in obese individuals: A randomized controlled trial. Sci. World J. 2014, 2014, 898361. [Google Scholar] [CrossRef]
- Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res. 2013, 180, 34–43. [Google Scholar] [CrossRef]
- Peterson, C.T.; Vaughn, A.R.; Sharma, V.; Chopra, D.; Mills, P.J.; Peterson, S.N.; Sivamani, R.K. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: A double-blind, randomized, placebo-controlled pilot study. J. Evid.-Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef]
- Kanai, M.; Otsuka, Y.; Otsuka, K.; Sato, M.; Nishimura, T.; Mori, Y.; Kawaguchi, M.; Hatano, E.; Kodama, Y.; Matsumoto, S. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin®) in cancer patients. Cancer Chemother. Pharmacol. 2013, 71, 1521–1530. [Google Scholar] [CrossRef]
- Greil, R.; Greil-Ressler, S.; Weiss, L.; Schönlieb, C.; Magnes, T.; Radl, B.; Bolger, G.T.; Vcelar, B.; Sordillo, P.P. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or metastatic cancer. Cancer Chemother. Pharmacol. 2018, 82, 695–706. [Google Scholar] [CrossRef]
- Shoba, G.; Joy, D.; Joseph, T.; Rajendran, M.M.R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Contributor | Publication Count (% of Total) | Citation Per Manuscript |
---|---|---|
Journal | ||
PLOS One | 234 (1.3%) | 21.6 |
FASEB Journal | 197 (1.1%) | 4.3 |
Cancer Research | 191 (1.1%) | 39.0 |
RSC Advances | 191 (1.1%) | 7.6 |
Journal of Agricultural and Food Chemistry | 187 (1.0%) | 41.2 |
Organization | ||
Council of Scientific Industrial Research (CSIR India) | 503 (2.8%) | 12.1 |
University of Texas | 307 (1.7%) | 173.5 |
University of California | 239 (1.3%) | 71.1 |
Wenzhou Medical University | 216 (1.2%) | 9.6 |
Indian Institute of Technology | 200 (1.1%) | 20.2 |
Country/Territory | ||
United States | 4073 (22.3%) | 39.0 |
China | 3546 (19.7%) | 15.3 |
India | 3128 (17.3%) | 23.4 |
Japan | 990 (5.5%) | 28.7 |
South Korea | 884 (4.9%) | 24.3 |
Term | Occurrence (% of 18,036 Publications) |
---|---|
Curcumin | 13,722 (76.1%) |
Effect | 7958 (44.1%) |
Study | 7418 (41.1%) |
Cell | 6096 (33.8%) |
Activity | 5832 (32.3%) |
Treatment | 4917 (27.3%) |
Compound | 3661 (20.3%) |
Level | 3612 (20.0%) |
Expression | 3363 (18.6%) |
Agent | 3287 (18.2%) |
Mechanism | 3087 (17.1%) |
Property | 2939 (16.3%) |
Concentration | 2858 (15.8%) |
Analysis | 2735 (15.2%) |
Inhibition | 2720 (15.1%) |
Pathway | 2712 (15.0%) |
Drug | 2663 (14.8%) |
Disease | 2661 (14.8%) |
Group | 2606 (14.4%) |
Protein | 2597 (14.4%) |
Keyword | Occurrence (% of 18,036 Publications) |
---|---|
Curcumin | 9539 (52.9%) |
Apoptosis | 2223 (12.3%) |
In vitro | 1909 (10.6%) |
Oxidative stress | 1834 (10.2%) |
Nf kappa b | 1558 (8.6%) |
Expression | 1543 (8.6%) |
Cells | 1480 (8.2%) |
Cancer | 1290 (7.2%) |
Inhibition | 1269 (7.0%) |
Activation | 1230 (6.8%) |
Antioxidant | 1108 (6.1%) |
Nanoparticles | 1021 (5.7%) |
Drug delivery | 939 (5.2%) |
In vivo | 880 (4.9%) |
Inflammation | 808 (4.5%) |
Mice | 773 (4.3%) |
Cancer cells | 768 (4.3%) |
Gene expression | 768 (4.3%) |
Alzheimer’s disease | 746 (4.1%) |
Rats | 708 (3.9%) |
1990s | Occurrence (% of 607) | 2000s | Occurrence (% of 3683) | 2010s | Occurrence (% of 13,636) |
---|---|---|---|---|---|
Curcumin | 140 (23.1%) | Curcumin | 1490 (40.5%) | Curcumin | 7909 (58.0%) |
Inhibition | 37 (6.1%) | Apoptosis | 442 (12.0%) | Apoptosis | 1773 (13.0%) |
Acid | 33 (5.4%) | Nf kappa b | 383 (10.4%) | In vitro | 1688 (12.4%) |
Tumor promotion | 30 (4.9%) | Inhibition | 355 (9.6%) | Oxidative stress | 1538 (11.3%) |
Activation | 28 (4.6%) | Expression | 306 (8.3%) | Expression | 1228 (9.0%) |
Chemoprevention | 28 (4.6%) | Activation | 298 (8.1%) | Cells | 1188 (8.7%) |
Dietary curcumin | 26 (4.3%) | Oxidative stress | 291 (7.9%) | Cancer | 1038 (7.6%) |
Mouse skin | 24 (4.0%) | Cells | 277 (7.5%) | Nanoparticles | 1009 (7.4%) |
Cancer | 23 (3.8%) | Gene expression | 267 (7.2%) | Nf kappa b | 987 (7.2%) |
Antioxidants | 22 (3.6%) | Cancer | 229 (6.2%) | Activation | 904 (6.6%) |
Curcuminoids | 22 (3.6%) | Dietary curcumin | 224 (6.1%) | Antioxidant | 889 (6.5%) |
Lipid peroxidation | 22 (3.6%) | In vitro | 219 (5.9%) | Inhibition | 877 (6.4%) |
Carcinogenesis | 21 (3.5%) | Antioxidant | 202 (5.5%) | Drug delivery | 743 (5.4%) |
Turmeric | 20 (3.3%) | Lipid peroxidation | 172 (4.7%) | In vivo | 740 (5.4%) |
Colon carcinogenesis | 19 (3.1%) | Induction | 147 (4.0%) | Inflammation | 706 (5.2%) |
Induction | 19 (3.1%) | In vivo | 138 (3.7%) | Mice | 644 (4.7%) |
In vitro | 16 (2.6%) | Proliferation | 133 (3.6%) | Bioavailability | 610 (4.5%) |
Protein-kinase-c | 16 (2.6%) | Curcuminoids | 125 (3.4%) | Stability | 609 (4.5%) |
Cells | 15 (2.5%) | Mice | 116 (3.1%) | Rats | 588 (4.3%) |
Gene expression | 14 (2.3%) | Chemoprevention | 114 (3.1%) | Therapy | 540 (4.0%) |
(1) China | (2) India | (3) USA | (4) Iran | (5) Italy |
---|---|---|---|---|
Curcumin | Curcumin | Curcumin | Curcumin | Curcumin |
Apoptosis | In vitro | In vitro | Oxidative stress | In vitro |
In vitro | Nanoparticles | Apoptosis | In vitro | Oxidative stress |
Expression | Apoptosis | Nf kappa b | Cancer | Nanoparticles |
Nanoparticles | Oxidative stress | Expression | Nanoparticles | Nf kappa b |
Oxidative stress | Cancer | Oxidative stress | Apoptosis | Apoptosis |
Cells | Drug delivery | Cancer | Cells | Drug delivery |
Activation | Cells | Nanoparticles | Placebo-controlled trial | Inflammation |
Drug delivery | Antioxidant | Cells | Drug delivery | Cancer |
Inhibition | Bioavailability | In vivo | Antioxidant | Expression |
Cancer | Delivery | Inflammation | Inhibition | Alzheimer’s disease |
Mice | Inhibition | Activation | Nf kappa b | Cells |
Inflammation | Expression | Bioavailability | Randomized controlled trial | Randomized controlled trial |
Stability | Stability | Inhibition | Double-blind | Placebo-controlled trial |
Proliferation | Derivatives | Drug delivery | Inflammation | Polyphenols |
In vivo | Cytotoxicity | Delivery | Therapy | Resveratrol |
Nf kappa b | Nf kappa b | Stability | Quality of life | Therapy |
Antioxidant | Design | Antioxidant | Delivery | In vivo |
Delivery | Inflammation | Alzheimer’s disease | Expression | Double-blind |
Therapy | Formulation | Mice | Mice | Activation |
Keyword | Occurrence (% of 3920 Publications) |
---|---|
Turmeric | 299 (7.6%) |
Curcuma longa | 231 (5.9%) |
Essential oil | 211 (5.4%) |
In vitro | 205 (5.2%) |
Zingiberaceae | 198 (5.1%) |
Apoptosis | 178 (4.5%) |
Antioxidant | 176 (4.5%) |
Antioxidant activity | 142 (3.6%) |
Constituents | 140 (3.6%) |
Oxidative stress | 131 (3.3%) |
Extract | 127 (3.2%) |
Expression | 126 (3.2%) |
Antimicrobial activity | 118 (3.0%) |
Cells | 114 (2.9%) |
Growth | 112 (2.9%) |
Curcuma | 110 (2.8%) |
Inhibition | 110 (2.8%) |
Rats | 102 (2.6%) |
Sesquiterpenes | 100 (2.6%) |
Ginger | 93 (2.4%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeung, A.W.K.; Horbańczuk, M.; Tzvetkov, N.T.; Mocan, A.; Carradori, S.; Maggi, F.; Marchewka, J.; Sut, S.; Dall’Acqua, S.; Gan, R.-Y.; et al. Curcumin: Total-Scale Analysis of the Scientific Literature. Molecules 2019, 24, 1393. https://doi.org/10.3390/molecules24071393
Yeung AWK, Horbańczuk M, Tzvetkov NT, Mocan A, Carradori S, Maggi F, Marchewka J, Sut S, Dall’Acqua S, Gan R-Y, et al. Curcumin: Total-Scale Analysis of the Scientific Literature. Molecules. 2019; 24(7):1393. https://doi.org/10.3390/molecules24071393
Chicago/Turabian StyleYeung, Andy Wai Kan, Michal Horbańczuk, Nikolay T. Tzvetkov, Andrei Mocan, Simone Carradori, Filippo Maggi, Joanna Marchewka, Stefania Sut, Stefano Dall’Acqua, Ren-You Gan, and et al. 2019. "Curcumin: Total-Scale Analysis of the Scientific Literature" Molecules 24, no. 7: 1393. https://doi.org/10.3390/molecules24071393
APA StyleYeung, A. W. K., Horbańczuk, M., Tzvetkov, N. T., Mocan, A., Carradori, S., Maggi, F., Marchewka, J., Sut, S., Dall’Acqua, S., Gan, R. -Y., Tancheva, L. P., Polgar, T., Berindan-Neagoe, I., Pirgozliev, V., Šmejkal, K., & Atanasov, A. G. (2019). Curcumin: Total-Scale Analysis of the Scientific Literature. Molecules, 24(7), 1393. https://doi.org/10.3390/molecules24071393