Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aroma Compounds of 15 Brands of EVOOs Extracted by SPME and SAFE
2.1.1. Alcohols
2.1.2. Aldehydes
2.1.3. Ketones
2.1.4. Acids
2.1.5. Esters
2.1.6. Aromatics
2.1.7. Terpenes
2.1.8. Others
2.2. Comparison of Extraction Effect of SPME and SAFE
2.3. Identification and Quantification of Key Aroma Compounds of 15 Brands of EVOOs
2.4. Comparison of Aroma Compounds of 15 Brands of EVOOs
3. Materials and Methods
3.1. Samples
3.2. Chemicals
3.3. Aroma Extraction of EVOO by SPME
3.4. Aroma Extraction of EVOO by SAFE
3.5. Gas Chromatography-Olfactometry-Mass Spectrometry (GC-MS/O) Analysis
3.6. Aroma Extract Dilution Analysis (AEDA)
3.7. Identification of Volatile Aroma Compounds
3.8. Quantification of Volatile Aroma Compounds
3.9. Calculation of OAV
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Padilla, M.N.; Martinez-Rivas, J.M.; Perez, A.G.; Sanz, C. Thermal inactivation kinetics of recombinant proteins of the lipoxygenase pathway related to the synthesis of virgin olive oil volatile compounds. J. Agric. Food Chem. 2012, 60, 6477–6482. [Google Scholar] [CrossRef]
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of the key aroma compounds in Turkish olive oils from different geographic origins by application of aroma extract dilution analysis (AEDA). J. Agric. Food Chem. 2014, 62, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization, statistical database. Available online: http://www.fao.org/faostat/en/#data (accessed on 6 May 2019).
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of the volatile, phenolic and antioxidant properties of monovarietal olive oil obtained from cv. Halhali. J. Am. Oil Chem. Soc. 2013, 90, 1685–1696. [Google Scholar] [CrossRef]
- Sanchez-Ortiz, A.; Perez, A.G.; Sanz, C. Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res. Int. 2013, 54, 1972–1978. [Google Scholar] [CrossRef] [Green Version]
- Amirante, P.; Clodoveo, M.L.; Tamborrino, A.; Leone, A. A New designer malaxer to improve thermal exchange enhancing virgin olive oil quality. Acta Hortic. 2012, 949, 455–462. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Tamborrino, A.; Leone, A.; Paice, A.G. Influence of the Crushing System: Phenol Content in Virgin Olive Oil Produced from Whole and De-stoned Pastes. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 69–76. ISBN 978-0-12-374420-3. [Google Scholar]
- Kandylis, P.; Vekiari, A.S.; Kanellaki, M.; Kamoun, N.G.; Msallem, M.; Kourkoutas, Y. Comparative study of extra virgin olive oil flavor profile of Koroneiki variety (Olea europaea var. Microcarpa alba) cultivated in Greece and Tunisia during one period of harvesting. Lwt-Food Sci. Tech. 2011, 44, 1333–1341. [Google Scholar] [CrossRef]
- Cecchi, T.; Alfei, B. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: Newly identified compounds, flavors molecular. Food Chem. 2013, 141, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Salch, Y.P.; Grove, M.J.; Takamura, H.; Gardner, H.W.J.P.P. Characterization of a C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean seed. Plant Physiol. 1995, 108, 1211–1218. [Google Scholar] [CrossRef]
- Amanpour, A.; Kelebek, H.; Kesen, S.; Selli, S. Characterization of aroma-active compounds in Iranian cv. mari olive oil by aroma extract dilution analysis and GC-MS-Olfactometry. J. Am. Oil Chem. Soc. 2016, 93, 1595–1603. [Google Scholar] [CrossRef]
- Ben Brahim, S.; Amanpour, A.; Chtourou, F.; Kelebek, H.; Selli, S.; Bouaziz, M. Gas chromatography-mass spectrometry-olfactometry to control the aroma fingerprint of extra virgin olive oil from three Tunisian cultivars at three harvest times. J. Agric. Food Chem. 2018, 66, 2851–2861. [Google Scholar] [CrossRef]
- Peres, F.; Jelen, H.H.; Majcher, M.M.; Arraias, M.; Martins, L.L.; Ferreira-Dias, S. Characterization of aroma compounds in Portuguese extra virgin olive oils from Galega Vulgar and Cobrancosa cultivars using GC-O and GC x GC-ToFMS. Food Res. Int. 2013, 54, 1979–1986. [Google Scholar] [CrossRef]
- Tahri, K.; Duarte, A.A.; Carvalho, G.; Ribeiro, P.A.; da Silva, M.G.; Mendes, D.; El Bari, N.; Raposo, M.; Bouchikhi, B. Distinguishment, identification and aroma compound quantification of Portuguese olive oils based on physicochemical attributes, HS-GC/MS analysis and voltammetric electronic tongue. J. Sci. Food Agric. 2018, 98, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, O.D.; Ben Rouina, Y.; Ben Mansour, A.; Flamini, G.; Ben Rouina, B.; Bouaziz, M. Comparative study of oil quality and aroma profiles from Tunisian olive cultivars growing in saharian oasis using chemometric analysis. J. Oleo Sci. 2016, 65, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Guadayol, J.M.; Caixach, J.; Lopez-Tamames, E.; Buxaderas, S. Comparative study of different extraction techniques for the analysis of virgin olive oil aroma. Food Chem. 2007, 105, 1171–1178. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavor evaporation-a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Goh, R.M.V.; Lau, H.; Liu, S.Q.; Lassabliere, B.; Guervilly, R.; Sun, J.C.; Bian, Y.L.; Yu, B. Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. Lwt-Food Sci. Tech. 2019, 99, 328–345. [Google Scholar]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Dynamic headspace/GC–MS to control the aroma fingerprint of extra-virgin olive oil from the same and different olive varieties. Food Control 2012, 25, 684–695. [Google Scholar] [CrossRef]
- Tura, D.; Failla, O.; Bassi, D.; Attilio, C.; Serraiocco, A. Regional and cultivar comparison of Italian single cultivar olive oils according to flavor profiling. Eur. J. Lipid Sci. Tech. 2013, 115, 196–210. [Google Scholar] [CrossRef]
- Reboredo-Rodriguez, P.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Concentrations of aroma compounds and odor activity values of odorant series in different olive cultivars and their oils. J. Agric. Food Chem. 2013, 61, 5252–5259. [Google Scholar] [CrossRef]
- Kesen, S.; Kelebek, H.; Sen, K.; Ulas, M.; Selli, S. GC-MS-olfactometric characterization of the key aroma compounds in Turkish olive oils by application of the aroma extract dilution analysis. Food Res. Int. 2013, 54, 1987–1994. [Google Scholar] [CrossRef]
- Morales, M.T.; Rios, J.J.; Aparicio, R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Kiritsakis, A.K. Flavor components of olive oil-a review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, S.C.; Shoemaker, C.F. Volatile constituents in sensory defective virgin olive oils. Flavour Frag. J. 2016, 31, 22–30. [Google Scholar] [CrossRef]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME–GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reboredo-Rodriguez, P.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Effects of sedimentation plus racking process in the extra virgin olive oil aroma fingerprint obtained by DHS-TD/GC-MS. Food Bioprocess Tech. 2013, 6, 1290–1301. [Google Scholar] [CrossRef]
- Tura, D.; Failla, O.; Bassi, D.; Pedo, S.; Serraiocco, A. Cultivar influence on virgin olive (Olea europea L.) oil flavor based on aromatic compounds and sensorial profile. Sci. Hortic. 2008, 118, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Reboredo-Rodriguez, P.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Valli, E.; Bendini, A.; Toschi, T.G.; Simal-Gandara, J. Characterization of virgin olive oils produced with autochthonous Galician varieties. Food Chem. 2016, 212, 162–171. [Google Scholar] [CrossRef]
- Bezysov, A.; Dubova, H.; Rogova, N. New methods of plant selection for food aroma recovery aided by oxidation processes. Acta Univ. CibiniensisSer. E: Food Tech. 2015, 19, 15–26. [Google Scholar] [CrossRef]
- Liu, Y.; He, C.C.; Song, H.L. Comparison of SPME versus SAFE processes for the analysis of flavor compounds in watermelon juice. Food Anal. Method 2018, 11, 1677–1689. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Song, H.L. Comparison of four extraction methods, SPME, DHS, SAFE, versus SDE, for the analysis of flavor compounds in natto. Food Anal. Method 2018, 11, 343–354. [Google Scholar] [CrossRef]
- Lei, F.; Zheng, S.L.; Xin, Y.S.; Shu, H.Z. Study of four coating materials of SPME fiber on extraction of aroma compounds in strawberry. Sci. Agric. Sin. 2010, 43, 4472–4481. [Google Scholar]
- Bajer, T.; Ligor, M.; Ligor, T.; Buszewski, B. Design of the extraction process for terpenes and other volatiles from allspice by solid-phase microextraction and hydrodistillation. J. Sep. Sci. 2016, 39, 769–775. [Google Scholar] [CrossRef]
- Zhao, F.F.; Liu, J.K.; Wang, X.P.; Li, P.W.; Zhang, W.; Zhang, Q. Detection of adulteration of sesame and peanut oils via volatiles by GC×GC-TOF/MS coupled with principal components analysis and cluster analysis. Eur. J. Lipid Sci. Technol 2013, 115, 337–347. [Google Scholar] [CrossRef]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.L.; Zhang, Y.; Tang, J.N.; Yu, D.H. Determination of aroma compounds in pork broth produced by different processing methods. Flavour Frag. J. 2016, 31, 319–328. [Google Scholar] [CrossRef]
- Usami, A.; Nakahashi, H.; Marumoto, S.; Miyazawa, M. Aroma evaluation of Setonojigiku (Chrysanthemum japonense var. debile) by hydrodistillation and solvent-assisted flavour evaporation. Phytochem. Anal. 2014, 25, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Schirack, A.V.; Drake, M.A.; Sanders, T.H.; Sandeep, K.P. Characterization of aroma-active compounds in microwave blanched peanuts. J. Food Sci. 2006, 71, 513–520. [Google Scholar] [CrossRef]
- Nuzzi, M.; Lo Scalzo, R.; Testoni, A.; Rizzolo, A. Evaluation of fruit aroma quality: Comparison between gas chromatography-olfactometry (GC-O) and odour activity value (OAV) aroma patterns of strawberries. Food Anal. Method 2008, 1, 270–282. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, C.; Li, C.W.; Liu, S.H.; Zhang, C.X.; Li, L.W.; Jiang, D.H. Characterization of aroma-active compounds of Pu-erh tea by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with GC-Olfactometry and GC-MS. Food Anal. Method 2016, 9, 1188–1198. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | CAS | LRI | Odor Property | ID 1 | Extraction Method | Brands of EVOOs 2 | |
---|---|---|---|---|---|---|---|
DB-Wax | DB-5 | ||||||
Alcohols | |||||||
(Z)-2-Pentenol | 1576-95-0 | 1157 | green, plastic | LRI, MS | SPME | 11 | |
1-Pentene-3-ol | 616-25-1 | 1157 | 686 | fruity, nut | LRI, MS, O | SPME/SAFE | 5, 10, 12-15/6, 8-10, 14, 15 |
Pentanol | 71-41-0 | 1206 | balsamic | LRI, MS | SPME | 3, 6, 7 | |
Eucalyptol | 470-82-6 | 1206 | mint, sweet | LRI, MS | SPME | 15 | |
Hexanol | 111-27-3 | 1345 | 868 | resin, flower, green | LRI, MS | SPME/SAFE | 1-4, 6-9, 11-14/1-15 |
(E)-3-Hexenol | 928-97-2 | 1376 | moss, fresh | LRI, MS, O | SAFE | 1-15 | |
(E)-2-Hexenol | 928-95-0 | 1397 | 866 | green, leaf, walnut | LRI, MS | SPME/SAFE | 1, 9, 12/1, 5-15 |
2-Ethyl hexanol | 104-76-7 | 1481 | 1030 | rose, green | LRI, MS | SPME/SAFE | 4-6, 13, 14/4-15 |
Linalool | 78-70-6 | 1538 | 1099 | flower, lavender | LRI, MS | SPME/SAFE | 5, 13/1-6, 9, 10, 13, 15 |
Octanol | 111-87-5 | 1549 | chemical, metal, burnt | LRI, MS | SPME/SAFE | 2, 3, 8/1-3, 9, 10, 12-15 | |
Nonanol | 143-08-8 | 1556 | 1172 | fat, green | LRI, MS | SPME | 2, 4, 7-10, 12-15 |
Undecanol | 112-42-5 | 1653 | mandarin | LRI, MS | SAFE | 3, 6, 9, 10, 12-15 | |
Benzyl alcohol | 100-51-6 | 1863 | 1038 | sweet, flower | LRI, MS | SPME/SAFE | 4, 7, 8, 12, 13, 15/1-5, 7-15 |
Phenylethyl alcohol | 60-12-8 | 1899 | 1115 | honey, spice, rose, lilac | LRI, MS | SPME/SAFE | 1-15/1-15 |
(Z)-2-Hexenol | 928-94-9 | 866 | leaf, green, wine, fruit | LRI, MS | SPME | 8, 15 | |
(Z)-3-Hexenol | 928-96-1 | 1382 | 855 | grass | LRI, MS, O | SPME/SAFE | 1-15/1-15 |
1-Octen-3-ol | 3391-86-4 | 979 | mushroom | LRI, MS | SPME | 2, 5, 6, 12, 15 | |
Aldehydes | |||||||
2-Methylbutyraldehyde | 96-17-3 | 905 | cocoa, almond | LRI, MS | SPME | 13 | |
Hexanal | 66-25-1 | 1081 | 801 | grass, tallow, fat | LRI, MS, O, STD | SPME/SAFE | 1-15/1-15 |
(E)-2-Pentenal | 1576-87-0 | 1126 | strawberry, fruit, tom | LRI, MS, O | SPME | 3-5, 12, 13, 15 | |
(E)-2-Hexenal | 6728-26-3 | 1214 | 852 | apple, green | LRI, MS, O, STD | SPME/SAFE | 1-15/1-15 |
(Z)-2-Hexenal | 505-57-7 | 848 | fat, rancid | LRI, MS, O | SPME | 7-12, 14, 15 | |
Octanal | 124-13-0 | 1285 | 1003 | fat, soap, lemon, green | LRI, MS | SAFE | 1-15/1-3, 5-15 |
(E)-2-Heptenal | 18829-55-5 | 1319 | 956 | soap, fat, almond | LRI, MS, O, STD | SPME/SAFE | 1-3, 5-13/1-3, 5-15 |
2,6-Dimethyl-5-heptenal | 106-72-9 | 1361 | fruit, green, melon | LRI, MS | SPME | 3 | |
Nonanal | 124-19-6 | 1388 | 1105 | fat, citrus, green | LRI, MS, O | SPME/SAFE | 1-15/1-15 |
(E)-2-Octenal | 2548-87-0 | 1425 | 1059 | green, nut, fat | LRI, MS, O | SPME/SAFE | 1-15/1-3, 5-8, 10-12 |
(E,E)-2,4-Heptadienal | 4313-03-5 | 1456 | 998 | nut, fat | LRI, MS, O | SPME/SAFE | 1-15/1-15 |
2-Furanaldehyde | 98-01-1 | 1457 | bread, almond, sweet | LRI, MS | SPME | 3 | |
Benzaldehyde | 100-52-7 | 1521 | almond, burnt sugar | LRI, MS | SPME | 1-12/15 | |
Phenylacetaldehyde | 122-78-1 | 1044 | hawthorn, honey, sweet | LRI, MS | SPME | 1, 4, 6, 10, 14 | |
(E)-2-Nonenal | 18829-56-6 | 1530 | 1161 | cucumber, fat, green | LRI, MS, O, STD | SPME/SAFE | 1-3, 5-15/1-3, 5-15 |
(Z)-2-Decenal | 2497-25-8 | 1263 | tallow | LRI, MS | SPME | 10 | |
(Z)-4-Decenal | 21662-09-9 | 1605 | green, must | LRI, MS | SAFE | 6, 11, 14 | |
(E)-2-Decenal | 3913-81-3 | 1640 | 1264 | tallow | LRI, MS | SPME/SAFE | 1-9, 11-15/1-15 |
2-Undecenal | 2463-77-6 | 1748 | 1369 | soap, fat, green | LRI, MS | SPME/SAFE | 3/1, 6, 8, 14 |
(E)-2-Dodecenal | 20407-84-5 | 1749 | green, fat, sweet | LRI, MS | SAFE | 3, 7 | |
(E,E)-2,4-Decadienal | 25152-84-5 | 1803 | 1321 | fried, wax, fat | LRI, MS | SPME/SAFE | 1-3, 5-7, 9-13/1-3, 5-11, 13, 14 |
Heptanal | 111-71-7 | 1181 | 902 | fat, citrus, rancid | LRI, MS | SPME/SAFE | 1-3, 5, 11, 13, 15/1, 3, 6, 7, 13, 15 |
Ketones | |||||||
2-Pentanone | 107-87-9 | 977 | ether, fruit | LRI, MS | SPME | 1-6 | |
3-Pentanone | 96-22-0 | 980 | ether | LRI, MS | SPME | 4-8, 10, 13-15 | |
1-Penten-3-one | 1629-58-9 | 1017 | <800 | fish, pungent | LRI, MS, O | SPME | 4, 13-15 |
2-Octanone | 111-13-7 | 1281 | soap, gasoline | LRI, MS, O, STD | SPME/SAFE | 1, 3, 12, 13/3 | |
1-Octen-3-one | 4312-99-6 | 1302 | mushroom, metal | O, STD | SAFE | 1-15 | |
6-Methyl-5-hepten-2-one | 110-93-0 | 1331 | 987 | pepper, mushroom, rubber | LRI, MS, O, STD | SPME/SAFE | 1-15/1-15 |
2-Nonanone | 821-55-6 | 1404 | hot milk, soap | O, STD | SAFE | 3, 6-8, 13-15 | |
3,5-Octadien-2-one | 38284-27-4 | 1511 | 1072 | fruit, fat, mushroom | LRI, MS | SPME/SAFE | 1, 5-9, 11-15/1-10, 12-15 |
Acetophenone | 98-86-2 | 1649 | must, flower, almond | LRI, MS | SPME | 2, 5 | |
Acids | |||||||
Acetic acid | 64-19-7 | 1435 | sour | LRI, MS, O, STD | SPME/SAFE | 1, 4, 5, 8, 11, 13, 15/1-13, 15 | |
Propionic acid | 79-09-4 | 1524 | pungent, rancid, soy | LRI, MS, O | SPME/SAFE | 1-3, 5, 6, 9, 11-15/2, 3, 6-10, 12, 14, 15 | |
Hexanoic acid | 142-62-1 | 1832 | 990 | sweat | LRI, MS, O | SPME/SAFE | 1, 7, 11, 13, 15/2, 3, 7, 9, 11, 13, 15 |
Nonanoic acid | 112-05-0 | 1273 | green, fat | LRI, MS | SPME/SAFE | 1, 2, 5, 7, 9, 10, 12, 13, 15/1, 6, 8-10, 13-15 | |
Esters | |||||||
Ethyl acetate | 141-78-6 | <900 | pineapple | LRI, MS | SPME | 2-4, 8, 10, 13 | |
Methyl hexanoate | 106-70-7 | 922 | fruit, fresh, sweet | LRI, MS, O | SPME | 3, 6 | |
Ethyl Hexanoate | 123-66-0 | 1231 | apple peel, fruit | LRI, MS | SPME/SAFE | 2, 3, 6/2, 3, 5 | |
Hexyl acetate | 142-92-7 | 1268 | 1013 | fruit, herb | LRI, MS | SPME/SAFE | 1-15/1-15 |
(Z)-3-Hexenyl acetate | 3681-71-8 | 1311 | 1007 | green, banana | LRI, MS, STD | SPME/SAFE | 1-15/1-15 |
Linalyl acetate | 115-95-7 | 1544 | sweet, fruit | LRI, MS | SPME | 5 | |
Methyl benzoate | 93-58-3 | 1613 | 1098 | prune, lettuce, herb, sweet | LRI, MS, O | SPME/SAFE | 1-15/1-7, 9, 10, 12-14 |
γ-Butyrolactone | 96-48-0 | 1626 | caramel, sweet | LRI, MS | SPME | 2, 3 | |
Methyl octanoate | 111-11-5 | 1123 | orange | LRI, MS | SPME | 2, 3, 6 | |
Ethyl benzoate | 93-89-0 | 1661 | 1172 | chamomile, flower, celery, fruit | LRI, MS | SPME/SAFE | 1-7, 9, 11/2-7, 9 |
γ-Hexanolide | 695-06-7 | 1701 | coumarin, sweet | LRI, MS | SPME | 7 | |
Methyl salicylate | 119-36-8 | 1769 | 1199 | peppermint | LRI, MS | SPME/SAFE | 4-10, 12-15/2-5, 7, 9-11, 13-15 |
Nonyl ethanoate | 143-13-5 | 1308 | sweet, fruit | LRI, MS | SPME | 7 | |
Butyl acetate | 123-86-4 | 815 | pear | LRI, MS | SAFE | 1, 4, 5 | |
Aromatics | |||||||
Methylbenzene | 108-88-3 | 1041 | <800 | paint | LRI, MS, O | SPME/SAFE | 1, 2, 4-8, 10, 12-15/1, 2, 5, 6 |
1,2-Dimethylbenzene | 95-47-6 | 1138 | 870 | geranium | LRI, MS, O | SPME/SAFE | 3, 5-8, 12, 13, 15/1-3, 5-15 |
1,3-Dimethylbenzene | 108-38-3 | 1182 | 861 | plastic | LRI, MS, O | SPME/SAFE | 1-3, 5-8, 10-15/1, 2, 5, 7, 9, 10 |
1,2,4-Trimethylbenzene | 95-63-6 | 1277 | 969 | plastic | LRI, MS | SAFE | 1-3, 5, 6, 8-15/1, 5, 6, 8, 10, 12-15 |
1,2,4,5-Tetramethylbenzene | 95-93-2 | 1436 | rancid, sweet | LRI, MS | SPME | 1, 7 | |
Terpenes | |||||||
Cinene | 138-86-3 | 1029 | lemon, orange | LRI, MS | SPME | 1, 2, 7-9, 15 | |
(+)-Dipentene | 5989-27-5 | 1198 | 1032 | citrus, mint | LRI, MS | SPME/SAFE | 3, 8, 10, 11, 13, 15/1-3, 6-11, 13, 15 |
3-Carene | 13466-78-9 | 1233 | 1049 | lemon, resin | LRI, MS, O | SPME | 1-4, 6-12, 14, 15 |
(E)-Ocimene | 3779-61-1 | 1235 | sweet, herb | LRI, MS | SPME | 7 | |
(Z)-3,7-Dimethyl-1,3,6-octatriene | 3338-55-4 | 1249 | 1054 | citrus, herb, flower | LRI, MS | SPME/SAFE | 1-13, 15/1-4, 9, 11, 15 |
Perillen | 539-52-6 | 1116 | wood | LRI, MS | SPME | 2, 3, 6, 7, 9, 13, 15 | |
Ethenylbenzene | 100-42-5 | 1252 | 892 | balsamic, gasoline | LRI, MS | SPME/SAFE | 1-3, 5, 6, 11/1-6, 11-15 |
(-)-α-Cubebene | 17699-14-8 | 1495 | herb, wax | LRI, MS | SPME | 8, 15 | |
(-)-α-Copaene | 3856-25-5 | 1495 | 1387 | wood, spice | LRI, MS | SPME/SAFE | 1-15/1-15 |
4-Methoxystyrene | 637-69-4 | 1675 | sweet | LRI, MS | SPME | 5 | |
(+)-Valencene | 4630-07-3 | 1717 | green, oil | LRI, MS | SPME | 5 | |
α-Farnesene | 502-61-4 | 1743 | 1512 | wood, sweet | LRI, MS, O | SPME/SAFE | 1-15/1-15 |
Others | |||||||
2-Pentylfuran | 3777-69-3 | 1231 | green bean, butter | LRI, MS | SPME | 1, 3, 5, 11 | |
Benzyl methyl ether | 538-86-3 | 1386 | 988 | metal | LRI, MS, O | SPME/SAFE | 2-6, 10/2, 6, 10 |
Dimethyl sulfoxide | 67-68-5 | 1568 | garlic | LRI, MS | SPME/SAFE | 1-7, 11/2-5, 7, 11 | |
Naphthalene | 91-20-3 | 1734 | 1189 | tar | LRI, MS | SPME/SAFE | 5,7, 11-15/2, 5-14 |
4-Ethylphenol | 123-07-9 | 2159 | phenol, spice | LRI, MS | SPME/SAFE | 3-6, 11/1-3, 5, 7, 8, 10, 11, 13 | |
4-Allylanisole | 140-67-0 | 1275 | licorice, anise | LRI, MS | SPME | 13 |
Compounds | FD | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BDS | OL | BLN | YGY | OLWL | OS | ALCF | MNN | AN | XBK | DMDN | MSWN | AGL | DNLE | |
Hexanal | 32 | 32 | 16 | 64 | 16 | 16 | 64 | 32 | 32 | 64 | 32 | 32 | 64 | 32 | 32 |
(E)-2-Hexenal | 64 | 64 | 64 | 16 | 64 | 16 | 8 | 8 | 16 | 16 | 64 | 8 | 4 | 4 | 2 |
2-Octanone | 4 | 2 | 4 | - | 4 | 2 | 4 | 16 | 2 | 4 | 0 | 4 | 8 | 4 | 4 |
1-Octen-3-one | 8 | 8 | 4 | 4 | 16 | 8 | 32 | 16 | 16 | 8 | 4 | 32 | 16 | 16 | 16 |
(E)-2-Heptenal | - | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 8 | 8 | 4 | 8 | 4 | 16 | 8 |
(E)-3-Hexenol | 8 | 4 | 4 | 4 | 4 | 4 | 8 | 0 | 2 | 2 | 0 | 0 | 4 | 4 | 4 |
Nonanal | - | - | - | - | - | 2 | 2 | 2 | 0 | 4 | 8 | - | 4 | 2 | 0 |
2-Nonanone | - | - | 0 | - | - | 4 | 4 | 0 | - | - | - | - | 2 | 0 | 2 |
Acetic acid | 4 | 2 | 4 | - | 4 | - | 4 | 16 | 2 | 2 | 2 | 4 | 0 | - | - |
(E)-2-Nonenal | 16 | - | 2 | 0 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 0 |
Methyl benzoate | - | 2 | - | - | 8 | 4 | - | - | - | 2 | 4 | 2 | - | - | - |
Compounds | Ion Selection (m/z) | Standard Curve | R2 | Concentration (mg/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BDS | OL | BLN | YGY | OLWL | OS | ALCF | MNN | AN | XBK | DMDN | MSWN | AGL | DNLE | ||||
Hexanal | 56.2, 72.2, 82.2 | y = 0.1546x | 0.9950 | 1.06 ± 0.17 | 0.92 ± 0.12 | 1.88 ± 0.39 | 0.64 ± 0.14 | 2.16 ± 0.22 | 1.23 ± 0.09 | 4.27 ± 0.03 | 1.69 ± 0.09 | 1.72 ± 0.03 | 1.84 ± 0.03 | 4.31 ± 0.10 | 1.37 ± 0.07 | 1.90 ± 0.04 | 1.76 ± 0.18 | 2.00 ± 0.11 |
(E)-2-Hexenal | 69.2, 83.2, 98.2 | y = 0.5272x | 0.9953 | 0.30 ± 0.01 | 1.01 ± 0.14 | 0.33 ± 0.07 | 0.69 ± 0.11 | 1.58 ± 0.03 | 1.52 ± 0.18 | 4.61 ± 0.77 | 3.05 ± 0.12 | 2.67 ± 0.14 | 3.81 ± 0.12 | 3.92 ± 0.00 | 3.25 ± 0.46 | 1.66 ± 0.01 | 3.87 ± 0.17 | 6.99 ± 0.35 |
(Z)-3-Hexenyl acetate | 67.2, 82.2 | y = 0.8552x | 0.9940 | 0.86 ± 0.09 | 2.22 ± 0.25 | 0.72 ± 0.16 | 2.32 ± 0.29 | 1.01 ± 0.02 | 1.87 ± 0.20 | 3.00 ± 0.65 | 1.19 ± 0.01 | 1.92 ± 0.19 | 2.22 ± 0.23 | 1.80 ± 0.01 | 2.10 ± 0.42 | 1.93 ± 0.09 | 3.70 ± 0.19 | 3.96 ± 0.08 |
(E)-3-Hexenol | 55.2, 67.2, 82.2 | y = 0.3685x | 0.9974 | 0.72 ± 0.01 | 1.63 ± 0.24 | 0.63 ± 0.10 | 1.60 ± 0.16 | 1.32 ± 0.05 | 1.41 ± 0.09 | 1.69 ± 0.33 | 1.09 ± 0.00 | 1.19 ± 0.05 | 1.20 ± 0.15 | 0.83 ± 0.05 | 1.03 ± 0.10 | 0.74 ± 0.03 | 0.64 ± 0.91 | 0.83 ± 0.01 |
Acetic acid | 60.2 | y = 0.1964x | 0.9970 | 2.32 ± 0.18 | 3.94 ± 0.58 | 2.21 ± 0.33 | 4.59 ± 0.38 | 2.14 ± 0.09 | 0.64 ± 0.05 | 3.05 ± 0.50 | 2.38 ± 0.10 | 3.07 ± 0.08 | 1.54 ± 0.18 | 0.82 ± 0.03 | 0.81 ± 0.04 | 0.86 ± 0.02 | 0.55 ± 0.03 | 1.21 ± 0.04 |
(E)-2-Heptenal | 55.2, 83.2, 112.2 | y = 8.4945x | 0.9948 | 0.30 ± 0.01 | 0.13 ± 0.01 | 0.48 ± 0.03 | 0.06 ± 0.01 | 0.24 ± 0.02 | 0.36 ± 0.01 | 0.44 ± 0.04 | 0.26 ± 0.02 | 0.39 ± 0.01 | 0.31 ± 0.01 | 0.43 ± 0.03 | 0.43 ± 0.03 | 0.31 ± 0.01 | 0.14 ± 0.02 | 0.26 ± 0.01 |
6-Methyl-5-hepten-2-one | 69.2, 108.2, 126.2 | y = 30.406x | 0.9982 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.07 ± 0.01 | 0.02 ± 0.00 | 0.09 ± 0.01 | 0.06 ± 0.00 | 0.11 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.08 ± 0.00 | 0.03 ± 0.00 | 0.08 ± 0.01 | 0.06 ± 0.00 | 0.03 ± 0.00 | 0.07 ± 0.00 |
Compounds | Threshold [19] | OAV | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BDS | OL | BLN | YGY | OLWL | OS | ALCF | MNN | AN | XBK | DMDN | MSWN | AGL | DNLE | ||
Hexanal | 80 | 12 | 11 | 22 | 7 | 25 | 14 | 49 | 19 | 20 | 21 | 50 | 16 | 22 | 20 | 23 |
(E)-2-Hexenal | 420 | 1 | 2 | 1 | 2 | 3 | 3 | 10 | 7 | 6 | 8 | 9 | 7 | 4 | 8 | 15 |
(Z)-3-Hexenyl acetate | 6.9 | 115 | 296 | 96 | 309 | 135 | 249 | 400 | 159 | 256 | 296 | 240 | 280 | 257 | 493 | 528 |
(E)-3-Hexenol | 1100 | <1 | 1 | <1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Acetic acid | 500 | 4 | 7 | 4 | 8 | 4 | 1 | 6 | 4 | 6 | 3 | 2 | 1 | 2 | 1 | 2 |
(E)-2-Heptenal | 5 | 55 | 24 | 88 | 11 | 44 | 66 | 81 | 48 | 72 | 57 | 79 | 79 | 57 | 26 | 48 |
6-Methyl-5-hepten-2-one | 1000 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Number (EVOOs of Spain) | Subtotal | Number (EVOOs of Italy) | Subtotal | Number (EVOOs of Greece) | Subtotal | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BDS | OL | BLN | YGY | OLWL | OS | ALCF | MNN | AN | XBK | DMDN | MSWN | AGL | DNLE | ||||
Alcohols | 5 | 7 | 9 | 8 | 10 | 39 | 10 | 9 | 11 | 12 | 12 | 54 | 8 | 12 | 12 | 11 | 15 | 58 |
Aldehydes | 13 | 12 | 17 | 10 | 13 | 65 | 13 | 13 | 12 | 11 | 14 | 63 | 14 | 13 | 13 | 12 | 13 | 65 |
Ketones | 5 | 5 | 6 | 6 | 6 | 28 | 6 | 5 | 5 | 3 | 4 | 23 | 3 | 4 | 7 | 6 | 6 | 26 |
Acids | 4 | 4 | 3 | 1 | 3 | 15 | 3 | 4 | 3 | 4 | 3 | 17 | 3 | 3 | 4 | 2 | 4 | 16 |
Esters | 5 | 9 | 10 | 7 | 8 | 39 | 8 | 7 | 5 | 5 | 5 | 30 | 5 | 4 | 5 | 4 | 3 | 21 |
Aromatics | 4 | 4 | 3 | 1 | 4 | 16 | 4 | 3 | 4 | 3 | 4 | 18 | 3 | 4 | 4 | 4 | 4 | 19 |
Terpenes | 7 | 8 | 7 | 5 | 4 | 31 | 7 | 8 | 7 | 7 | 5 | 34 | 6 | 5 | 6 | 4 | 9 | 30 |
Others | 3 | 4 | 4 | 3 | 5 | 19 | 3 | 3 | 2 | 1 | 3 | 12 | 4 | 1 | 3 | 1 | 0 | 9 |
Subtotal | 46 | 53 | 59 | 41 | 53 | 54 | 52 | 49 | 46 | 50 | 46 | 46 | 54 | 44 | 54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Liu, S.; Liu, Y.; Song, H. Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation. Molecules 2019, 24, 1512. https://doi.org/10.3390/molecules24081512
Zhou Q, Liu S, Liu Y, Song H. Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation. Molecules. 2019; 24(8):1512. https://doi.org/10.3390/molecules24081512
Chicago/Turabian StyleZhou, Qi, Shaomin Liu, Ye Liu, and Huanlu Song. 2019. "Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation" Molecules 24, no. 8: 1512. https://doi.org/10.3390/molecules24081512
APA StyleZhou, Q., Liu, S., Liu, Y., & Song, H. (2019). Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation. Molecules, 24(8), 1512. https://doi.org/10.3390/molecules24081512