Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Composition
2.1.1. Buffalo Milk
2.1.2. Cow Milk
2.2. Volatile Organic Compounds
2.2.1. Buffalo Milk
2.2.2. Cow Milk
3. Discussion
4. Materials and Methods
4.1. Experimental Design, Forage Species, and Mycorrhizal Treatment
4.2. Maize Test on Farm A
4.3. Sorghum Test on Farm B
4.4. Milk Sampling and Chemical Analysis
4.5. Milk Fatty Acid Analysis
4.6. Milk Volatile Organic Compound Analysis
4.7. Statistical Analysis of Data
Author Contributions
Funding
Conflicts of Interest
References
- Wahid, F.; Sharif, M.; Steinkellner, S.; Khan, M.A.; Marwat, K.; Khan, S. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak. J. Bot 2016, 48, 739–747. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Wu, Q.S.; Liu, C.Y.; Zhang, D.J.; Zou, Y.N.; He, X.H.; Wu, Q.H. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 2016, 26, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Leake, J.R.; Read, D.J. Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol. 2001, 152, 555–562. [Google Scholar] [CrossRef]
- Uzun, P.; Masucci, F.; Serrapica, F.; Varricchio, M.L.; Pacelli, C.; Claps, S.; Di Francia, A. Use of mycorrhizal inoculum under low fertilizer application: Effects on forage yield, milk production, and energetic and economic efficiency. J. Agric. Sci. 2018, 156, 127–135. [Google Scholar] [CrossRef]
- Nemec, S.; Lund, E. Leaf volatiles of mycorrhizal and nonmycorrhizal Citrus jambhiri Lush. J. Essent. Oil Res. 1990, 2, 287–297. [Google Scholar] [CrossRef]
- Fontana, A.; Reichelt, M.; Hempel, S.; Gershenzon, J.; Unsicker, S.B. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J. Chem. Ecol. 2009, 35, 833–843. [Google Scholar] [CrossRef]
- García-Garrido, J.M.; Ocampo, J.A. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 2002, 53, 1377–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.H.; Fester, T.; Strack, D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J. 2000, 21, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.H.; Hans, J.; Strack, D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: Differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 2002, 31, 243–254. [Google Scholar] [CrossRef]
- Sun, X.G.; Tang, M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S. Afr. J. Bot. 2013, 88, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Honkanen, E.; Karvonen, P.; Virtanen, A.I. Studies on the transfer of some flavour compounds to milk. Acta Chem. Scand. 1964, 18, 612–618. [Google Scholar] [CrossRef]
- Viallon, C.; Martin, B.; Verdier-Metz, I.; Pradel, P.; Garel, J.P.; Coulon, J.B.; Berdagué, J.L. Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Le lait 2000, 80, 635–641. [Google Scholar]
- Dougherty, R.W.; Shipe, W.F.; Gudnason, G.V.; Ledford, R.A.; Peterson, R.D.; Scarpellino, R. Physiological mechanisms involved in transmitting flavours and odors to milk. I. Contribution of eructated gases to milk flavor. J. Dairy Sci. 1962, 45, 472–476. [Google Scholar] [CrossRef]
- Shipe, W.F.; Ledford, R.A.; Peterson, R.D.; Scanlan, R.A.; Geerken, H.F.; Dougherty, R.W.; Morgan, M.E. Physiological mechanisms involved in transmitting flavors and odors to milk. II. Transmission of some flavor components of silage. J. Dairy Sci. 1962, 45, 477–480. [Google Scholar] [CrossRef]
- Bendall, J.G. Aroma compounds of fresh milk from New Zealand cows fed different diets. J. Agric. Food Chem. 2001, 10, 4825–4832. [Google Scholar] [CrossRef]
- Coppa, M.; Martin, B.; Pradel, P.; Leotta, B.; Priolo, A.; Vasta, V. Effect of a hay-based diet or different upland grazing systems on milk volatile compounds. J. Agric. Food Chem. 2011, 59, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, M.P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.F.; Vuillemard, J.C.; Fortin, J.; Chouinard, P.Y. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef]
- Penchev, P.; Ilieva, Y.; Ivanova, T.; Kalev, R. Fatty acid composition of buffalo and bovine milk as affected by roughage source-silage versus hay. Emir. J. Food Agr. 2016, 28, 264–270. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.; Addeo, F. Neutral volatile compounds in the raw milks from different species. J. Dairy Res. 1993, 60, 199–213. [Google Scholar] [CrossRef]
- Cadwallader, K.R.; Singh, T.K. Flavours and off-flavours in milk and dairy products. In Advanced Dairy Chemistry; McSweeney, P., Fox, P., Eds.; Springer: New York, NY, USA, 2009; pp. 631–690. [Google Scholar]
- Moio, L.; Dekimpe, J.; Etievant, P.X.; Addeo, F. The neutral volatile compounds of water buffalo milk. Ital. J. Food Sci. 1993, 5, 43–56. [Google Scholar]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Prache, S.; Cornu, A.; Berdagué, J.L.; Priolo, A. Traceability of animal feeding diet in the meat and milk of small ruminants. Small Ruminant Res. 2005, 59, 157–168. [Google Scholar] [CrossRef]
- Engel, E.; Ferlay, A.; Cornu, A.; Chilliard, Y.; Agabriel, C.; Bielicki, G.; Martin, B. Relevance of isotopic and molecular biomarkers for the authentication of milk according to production zone and type of feeding. J. Agric. Food Chem. 2007, 55, 9099–9108. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Ferlay, A.; Shingfield, K.J.; Chilliard, Y. Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Anim Sci. 2006, 82, 479–492. [Google Scholar] [CrossRef]
- Slots, T.; Butler, G.; Leifert, C.; Kristensen, T.; Skibsted, L.; Nielsen, J. Potential to differentiate milk composition by different feeding strategies. J. Dairy Sci. 2009, 92, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Stergiadis, S.; Leifert, C.; Seal, C.J.; Eyre, M.D.; Nielsen, J.H.; Larsen, M.K.; Slots, T.; Steinshamn, H.; Butler, G. Effect of feeding intensity and milking system on nutritionally relevant milk components in dairy farming systems in the North East of England. J. Agric. Food Chem. 2012, 60, 7270–7281. [Google Scholar] [CrossRef]
- Glasser, F.; Ferlay, A.; Chilliard, Y. Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. J. Dairy Sci. 2008, 91, 4687–4703. [Google Scholar] [CrossRef]
- Szczechowiak, J.; Szkudelska, K.; Szumacher-Strabel, M.; Sadkowski, S.; Gwozdz, K.; El-Sherbiny, M.; Kozłowska, M.; Rodriguez, V.; Cieslak, A. Blood hormones, metabolic parameters and fatty acid proportion in dairy cows fed condensed tannins and oils blend. Ann. Anim. Sci. 2018, 18, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Duncan, S.E.; O’Keefe, S.F.; Sumner, S.S.; Herbein, J.H. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. J. Dairy Sci. 2003, 86, 70–77. [Google Scholar] [CrossRef]
- Toso, B.; Procida, G.; Stefanon, B. Determination of volatile compounds in cows’ milk using headspace GC-MS. J. Dairy Sci. 2002, 69, 569–577. [Google Scholar] [CrossRef]
- Strandvik, B. The omega-6/omega-3 ratio is of importance. Prostag. Leukotr. ESS. 2011, 85, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Moio, L.; Langlois, D.; Etievant, P.X.; Addeo, F. Powerful odorants in water buffalo and bovine Mozzarella cheese by use of extract dilution sniffing analysis. Ital. J. Food Sci. 1993, 3, 227–237. [Google Scholar]
- Moio, L.; Dekimpe, J.; Etievant, P.X.; Addeo, F. Volatile flavour compounds of water buffalo Mozzarella cheese. Ital. J. Food Sci. 1993, 5, 57–68. [Google Scholar]
- Moio, L.; Addeo, F. Grana Padano cheese aroma. J. Dairy Res. 1998, 65, 317–333. [Google Scholar] [CrossRef]
- Moio, L.; Piombino, P.; addeo, F. Odour-impact compounds of Gorgonzola cheese. J. Dairy Res. 2000, 67, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A. Optimization of headspace solid-phase microextraction (SPME) for the odor analysis of surface-ripened cheese. J. Agric. Food Chem. 2002, 50, 3810–3817. [Google Scholar] [CrossRef]
- Frank, D.C.; Owen, C.M.; Patterson, J. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. LWT-Food Sci. Technol. 2004, 37, 139–154. [Google Scholar] [CrossRef]
- Cornu, A.; Rabiau, N.; Kondjoyan, N.; Verdier-Metz, I.; Pradel, P.; Tournayre, P.; Berdagué, J.L.; Martin, B. Odour-active compound profiles in Cantal-type cheese: Effect of cow diet, milk pasteurization and cheese ripening. Int. Dairy J. 2009, 19, 588–594. [Google Scholar] [CrossRef]
- Sádecká, J.; Kolek, E.; Pangallo, D.; Valík, L.; Kuchta, T. Principal volatile odorants and dynamics of their formation during the production of May Bryndza cheese. Food Chem. 2014, 150, 301–306. [Google Scholar] [CrossRef]
- Suriyaphan, O.; Drake, M.; Chen, X.Q.; Cadwallader, K.R. Characteristic aroma components of British Farmhouse Cheddar cheese. J. Agric. Food Chem. 2001, 49, 1382–1387. [Google Scholar] [CrossRef]
- Singh, T.K.; Drake, M.A.; Cadwallader, K.R. Flavor of Cheddar cheese: A chemical and sensory perspective. Compr. Rev. Food Sci. F. 2003, 2, 166–189. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.X.; Addeo, F. Comparison of the neutral volatile compounds in Mozzarella cheese made from bovine and water buffalo milk. Ital. J. Food Sci. 1993, 5, 215–225. [Google Scholar]
- Mori, M.; Di Mola, I. Guida Alla Concimazione. Metodi, Procedure e Strumenti Per un Servizio di Consulenza; Imago Publisher: Naples, Italy, 2012. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Broderick, G.A.; Valadares, R.F.D.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on nutrient utilization and milk production. J. Dairy Sci. 2000, 83, 106–114. [Google Scholar] [CrossRef]
- White, S.L.; Bertrand, J.A.; Wade, M.R.; Washburn, S.P.; Green, J.T.; Jenkins, T.C. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001, 84, 2295–2301. [Google Scholar] [CrossRef]
- Ichihara, K.; Shibahara, A.; Yamamoto, K.; Nakayama, T. An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids 1996, 31, 535–539. [Google Scholar] [CrossRef]
- Lee, J.H.; Diono, R.; Kim, G.Y.; Min, D.B. Optimization of solid phase microextraction analysis for the headspace volatile compounds of Parmesan cheese. J. Agric. Food Chem. 2003, 51, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Gioacchini, A.M.; De Santi, M.; Guescini, M.; Brandi, G.; Stocchi, V. Characterization of the volatile organic compounds of Italian ‘Fossa’cheese by solid-phase microextraction gas chromatography/mass spectrometry. Rapid Commun. Mass SP. 2010, 24, 3405–3412. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Fatty Acids | M | sd | M + m | sd | Change (%) a M + m/M | ||
---|---|---|---|---|---|---|---|
C4:0 | Butyric acid | 7.41 | 0.27 | 9.00 | 0.59 | +22 | * |
C6:0 | Caproic acid | 3.64 | 0.07 | 4.77 | 0.45 | +31 | * |
C8:0 | Caprylic acid | 1.91 | 0.26 | 2.21 | 0.19 | +16 | |
C10:0 | Capric acid | 3.15 | 0.27 | 3.91 | 0.19 | +24 | * |
C11:0 | Undecanoic acid | 0.07 | 0.01 | 0.07 | 0.01 | +3 | |
C12:0 | Lauric acid | 3.74 | 0.26 | 4.37 | 0.325 | +17 | |
C13:0 | Tridecylic acid | 0.16 | 0.01 | 0.15 | 0.01 | −8 | |
C14:0 | Myristic acid | 14.11 | 0.39 | 14.82 | 0.035 | +5 | |
C15:0 | Pentadecylic acid | 1.50 | 0.08 | 1.37 | 0.02 | −9 | |
C16:0 | Palmitic acid | 39.49 | 1.23 | 37.94 | 0.09 | −4 | |
C17:0 | Margaric acid | 0.49 | 0.01 | 0.39 | 0.03 | −20 | * |
C18:0 | Stearic acid | 5.92 | 0.48 | 4.72 | 0.72 | −20 | |
C24:0 | Lignoceric acid | 0.05 | 0.01 | 0.05 | 0.00 | −16 | |
SFA | 81.64 | 0.15 | 83.8 | 1.02 | +3 | * | |
C14:1n9 | Myristoleic acid | 1.60 | 0.13 | 1.70 | 0.00 | +6 | |
C16:1n9 | Palmitoleic acid | 2.73 | 0.36 | 2.76 | 0.11 | +1 | |
C17:1 | Heptadecenoic acid | 0.29 | 0.00 | 0.26 | 0.00 | −12 | * |
C18:1n9t | Elaidic acid | 0.25 | 0.01 | 0.38 | 0.19 | +53 | |
C18:1n9c | Oleic acid | 11.37 | 0.73 | 9.31 | 1.05 | −18 | * |
C18:1n7 | Vaccenic acid | 0.16 | 0.01 | 0.12 | 0.02 | −21 | |
C20:1n9 | Eicosenoic acid | 0.08 | 0.0 | 0.07 | 0.01 | −15 | |
C22:1n9 | Erucic acid | 0.03 | 0.0 | 0.03 | 0.01 | +6 | |
C24:1 | Nervonic acid | 0.06 | 0.01 | 0.05 | 0.0 | −26 | * |
MUFA | 16.5 | 0.22 | 14.68 | 0.79 | −11 | * | |
C18:2n6tc+ct | Trans-linoleic acid | 0.21 | 0.02 | 0.14 | 0.01 | −32 | * |
C18:2n6c | Linoleic acid | 1.10 | 0.03 | 0.90 | 0.14 | −19 | |
CLA | Conjugated linoleic acid | 0.31 | 0.02 | 0.25 | 0.04 | −17 | |
C20:3n6 | Homo-γ-linoleic acid | 0.04 | 0.00 | 0.04 | 0.01 | −3 | |
C20:4n6 | Arachidonic acid | 0.10 | 0.01 | 0.10 | 0.02 | +6 | |
C22:2n6 | Docosadienoic acid | 0.04 | 0.01 | 0.05 | 0.00 | +4 | |
PUFA n-6 | 1.59 | 0.06 | 1.34 | 0.24 | −16 | ||
C18:3n3 | α-Linolenic acid | 0.13 | 0.00 | 0.10 | 0.01 | −24 | * |
C20:5n3 | Eicosapentaenoic acid (EPA) | 0.02 | 0.00 | 0.02 | 0.00 | +1 | |
C22:6n3 | Docosahexaenoic acid (DHA) | 0.04 | 0.01 | 0.03 | 0.00 | −16 | |
PUFA n-3 | 0.19 | 0.01 | 0.15 | 0.02 | −19 | * | |
ω6/ω3 | 8.42 | 0.15 | 8.74 | 0.67 | +4 |
Fatty Acids | S | sd | S + m | sd | Change (%) a S+/S− | ||
---|---|---|---|---|---|---|---|
C4:0 | Butyric acid | 5.53 | 0.86 | 7.69 | 0.96 | +39 | * |
C6:0 | Caproic acid | 3.40 | 0.44 | 4.35 | 0.04 | +28 | * |
C8:0 | Caprylic acid | 1.95 | 0.28 | 2.16 | 0.03 | +11 | |
C10:0 | Capric acid | 4.25 | 0.64 | 4.17 | 0.48 | −2 | |
C11:0 | Undecanoic acid | 0.11 | 0.04 | 0.09 | 0.02 | −17 | |
C12:0 | Lauric acid | 4.79 | 0.71 | 4.64 | 0.39 | −2 | |
C13:0 | Tridecylic acid | 0.17 | 0.04 | 0.17 | 0.01 | −3 | |
C 14:0 | Myristic acid | 14.10 | 0.35 | 14.52 | 0.21 | +3 | |
C15:0 | Pentadecylic acid | 1.43 | 0.11 | 1.43 | 0.00 | 0 | |
C16:0 | Palmitic acid | 37.94 | 0.76 | 38.78 | 0.99 | +2 | |
C17:0 | Margaric acid | 0.50 | 0.02 | 0.43 | 0.06 | −14 | |
C18:0 | Stearic acid | 5.82 | 0.86 | 4.86 | 0.52 | −16 | |
C24:0 | Lignoceric acid | 0.06 | 0.00 | 0.05 | 0.01 | −8 | |
SFA | 80.06 | 1.90 | 83.34 | 0.69 | +4 | * | |
C14:1n9 | Myristoleic acid | 1.94 | 0.14 | 1.78 | 0.08 | −8 | |
C16:1n9 | Palmitoleic acid | 1.88 | 0.17 | 2.34 | 0.58 | +25 | |
C 17:1 | Heptadecenoic acid | 0.27 | 0.02 | 0.25 | 0.02 | −9 | |
C18:1n9t | Elaidic acid | 0.93 | 0.37 | 0.66 | 0.04 | −29 | |
C18:1n9 | Oleic acid | 11.66 | 1.43 | 9.31 | 0.53 | −20 | |
C18:1n7 | Vaccenic acid | 0.16 | 0.02 | 0.15 | 0.03 | −6 | |
C22:1n9 | Erucic acid | 0.06 | 0.01 | 0.04 | 0.01 | −24 | |
C24:1 | Nervonic acid | 0.06 | 0.01 | 0.04 | 0.01 | −51 | * |
MUFA | 16.95 | 1.47 | 14.56 | 0.14 | −14 | * | |
C18:2n6tc+ct | Trans-linoleic acid | 0.27 | 0.07 | 0.19 | 0.07 | −29 | |
C18:2n6c | Linoleic acid | 1.73 | 0.20 | 1.17 | 0.29 | −32 | |
CLA | Conjugated linoleic acid | 0.40 | 0.09 | 0.28 | 0.04 | −31 | |
C20:3n6 | Homo-γ-linoleic acid | 0.10 | 0.03 | 0.28 | 0.04 | +21 | |
C22:2n6 | Docosadienoic acid | 0.05 | 0.00 | 0.05 | 0.00 | −8 | |
PUFA n-6 | 2.55 | 0.35 | 1.81 | 0.40 | −29 | ||
C18:3n3 | α-Linolenic acid | 0.35 | 0.07 | 0.23 | 0.13 | −32 | |
C20:5n3 | EPA | 0.02 | 0.00 | 0.01 | 0.00 | −35 | |
C22:6n3 | DHA | 0.07 | 0.01 | 0.04 | 0.01 | −44 | * |
PUFA n-3 | 0.44 | 0.08 | 0.29 | 0.14 | −34 | ||
ω6/ω3 | 5.88 | 0.26 | 7.49 | 3.31 | +27 |
Compound | Odor Descriptors a | Concentration | Change (%) M + m vs. M b | ||
---|---|---|---|---|---|
M | M + m | ||||
Ketones | |||||
Acetone | 55.82 ± 12.22 | 26.14 ± 2.67 | −53 | * | |
2-Butanone | Varnish [35] | 16.08 ± 4.05 | 18.85 ± 1.89 | +17 | |
2-Heptanone | Animals [35], blue cheese [35,36,37,38,39], moldy [36], spicy [37,38,39], cinnamon [37,38], musty [40], varnish [40], sweet [40], Roquefort cheese [39] | 8.04 ± 1.57 | 18.85 ± 1.58 | +134 | * |
2-Nonanone | Hot milk [35], smoked cheese [35], varnish [36], fruity [37,38,40], floral [37,38,40], peachy [41] | 4.75 ± 0.48 | 7.07 ± 0.22 | +46 | * |
Acids | |||||
Butanoic acid | Cheese [40,41,42,43,44], rotten [40], sharp [40], rancid cheese [39], putrid [39], vomit [16,41], sweaty [39,44], buttery [42], fermented [42], fecal [43,44], cheese [16] | 22.75 ± 2.63 | 28.96 ± 1.65 | +27 | * |
Hexanoic acid | Sharp [40], goaty [40,44], pungent [39], blue cheese [39], sour [39] | 165.18 ± 3.14 | 172.77 ± 41.34 | +5 | |
Octanoic acid | Goaty [39,42], waxy [39,42], soapy [39], musty [39], rancid [39,42], fruity [39], unpleasant [42], fatty [42], body odor [43,44], sweat 43,44] | 87.23 ± 14.80 | 130.06 ± 9.79 | +49 | * |
Decanoic acid | Waxy-sweet [40], rancid fatty [39] | 18.50 ± 2.53 | 23.75 ± 1.67 | +28 | * |
Undecanoic acid (t) | 6.65 ± 1.47 | 6.39 ± 0.43 | −4 | ||
Tetradecanoic acid (t) | 8.23 ± 0.96 | 8.15 ± 0.96 | −1 | ||
Esters | |||||
Ethyl acetate | Sticky [45], sweet [45] | 7.60 ± 0.52 | nf | – | * |
Alcohols | |||||
2-Ethyl hexanol (t) | Spicy [35] | 9.80 ± 1.05 | 10.49 ± 0.60 | +7 | |
Aldehydes | |||||
Hexanal | Green apple [45], grassy [45] | 6.61 ± 0.60 | 7.02 ± 1.20 | +6 | |
Nonanal | Green [35,36,37,46], animals [35,36,46], grass-like [36,37,46], fatty [36,37,46], floral [37], citrus [37,41] | 10.65 ± 1.51 | 20.03 ± 1.19 | +88 | * |
Decanal | nf | 3.67 ± 0.26 | + | * |
Compound | Odor Descriptors a | Concentration | Change (%) S + m vs. S b | ||
---|---|---|---|---|---|
S | S+m | ||||
Ketones | |||||
Acetone | 5.38 ± 1.32 | 5.49 ± 1.27 | +2 | ||
2-Butanone | Varnish [35] | 5.06 ± 0.08 | 4.19 ± 0.14 | −17 | * |
2-Nonanone | Hot milk [35], smoked cheese [35], varnish [36], fruity [37,38,39], floral [37,38,40], peachy [40] | 1.65 ± 0.09 | 3.11 ± 0.58 | +88 | * |
Acids | |||||
Butanoic acid | Cheese [40,41,42,43,44], rotten [40], sharp [40], rancid cheese [39], putrid [39], vomit [16,41], sweaty [39,44], buttery [42], fermented [42], fecal [43,44], cheese [16] | 7.23 ± 1.40 | 27.43 ± 2.60 | +279 | * |
Hexanoic acid | Sharp [40], goaty [40,44], pungent [39], blue cheese [39], sour [39] | 88.70 ± 14.16 | 180.81 ± 32.45 | +104 | * |
Octanoic acid | Goaty [39,42], waxy [39,42], soapy [39], musty [39], rancid [39,42], fruity [39], unpleasant [42], fatty [42], body odor [43,44], sweat [43,44] | 91.66 ± 5.40 | 190.11 ± 42.92 | +107 | * |
Nonanoic acid | nf | 2.17 ± 0.36 | + | ||
Decanoic acid | Waxy-sweet [40], rancid fatty [39] | 31.47 ± 1.41 | 60.71 ± 2.45 | +93 | * |
Undecanoic acid (t) | 3.57 ± 0.51 | 6.34 ± 0.07 | +78 | * | |
Tetradecanoic acid (t) | 2.20 ± 0.72 | 3.01 ± 0.21 | +37 | * | |
Esters | |||||
Ethyl acetate | Sticky [45], sweet [45] | 2.89 ± 0.02 | nf | - | * |
Alcohols | |||||
2-Ethyl hexanol (t) | Spicy [35] | 15.36 ± 0.67 | 14.99 ± 1.07 | −2 | |
Aldehydes | |||||
Hexanal | Green apple [45], grassy [45] | 16.22 ± 2.39 | 11.92 ± 2.35 | −27 | |
Nonanal | Green [35,36,37,46], animals [35,36,46], grass-like [36,37,46], fatty [36,37,46], floral [37], citrus [37,41] | 7.91 ± 1.77 | 7.36 ± 0.34 | −7 | |
Decanal | 2.31 ± 0.44 | 2.96 ± 0.65 | −28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, A.; Marrazzo, A.; De Luca, L.; Romano, R.; Manzo, N.; Masucci, F.; Di Francia, A.; Sacchi, R. Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage. Molecules 2019, 24, 1616. https://doi.org/10.3390/molecules24081616
Genovese A, Marrazzo A, De Luca L, Romano R, Manzo N, Masucci F, Di Francia A, Sacchi R. Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage. Molecules. 2019; 24(8):1616. https://doi.org/10.3390/molecules24081616
Chicago/Turabian StyleGenovese, Alessandro, Andrea Marrazzo, Lucia De Luca, Raffaele Romano, Nadia Manzo, Felicia Masucci, Antonio Di Francia, and Raffaele Sacchi. 2019. "Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage" Molecules 24, no. 8: 1616. https://doi.org/10.3390/molecules24081616
APA StyleGenovese, A., Marrazzo, A., De Luca, L., Romano, R., Manzo, N., Masucci, F., Di Francia, A., & Sacchi, R. (2019). Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage. Molecules, 24(8), 1616. https://doi.org/10.3390/molecules24081616