Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches
Abstract
:1. Introduction
2. Macroalgal Proteins and their Bioactive Derived Peptides
3. Proteomic Profile Analysis of Macroalgae
4. Transcriptomic Analysis of Macroalgae in Response to Abiotic Factors
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Fisheries, F.A.O. The State of World Fisheries and Aquaculture, in FAO Fisheries and Aquaculture Department; FAO: Rome, Italy, 2014; p. 243. [Google Scholar]
- Cardoso, S.M.; Pereira, O.R.; Seca, A.M.L.; Pinto, D.C.G.A.; Silva, A.M.S. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs. 2015, 13, 6838–6865. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Connan, S.; Deslandes, E.; Gall, E.A. Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J. Exp. Mar. Biol. Ecol. 2007, 349, 359–369. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2004; pp. 197–213. [Google Scholar]
- Kumar, M.; Kuzhiumparambil, U.; Pernice, M.; Jiang, Z.; Ralph, J.R. Metabolomics: An emerging frontier of systems biology in marine macrophyte. Algal Res. 2016, 16, 76–92. [Google Scholar] [CrossRef]
- Tierney, M.S.; Croft, A.K.; Hayes, M. A review of antihypertensive and antioxidant activities in macroalgae. Bot. Mar. 2010, 53, 387–408. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Eggert, A. Seaweed Responses to Temperature, in Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization; Wiencke, C., Bischof, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–66. [Google Scholar]
- Roleda, M.Y.; Clayton, M.N.; Wiencke, C. Screening capacity of UV-absorbing compounds in spores of Arctic laminariales. J. Exp. Mar. Biol. Ecol. 2006, 338, 123–133. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Tang, X. Ultraviolet irradiation induced oxidative stress and response of antioxidant system in an intertidal macroalgae Corallina officinalis L. J. Environ. Sci. 2010, 22, 716–722. [Google Scholar] [CrossRef]
- Barbosa, M.; Fernandes, F.; Pereira, D.M.; Azevedo, I.C.; Sousa-Pinto, I.; Andrade, P.B.; Valentão, P. Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Li, J.; Fu, W.; Yao, J.; Duan, D. Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae). Mar. Genomics. 2012, 5, 53–58. [Google Scholar] [CrossRef]
- Lewis, S.; Donkin, M.E.; Depledge, M.H. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat. Toxicol. 2001, 51, 277–291. [Google Scholar] [CrossRef]
- Smolina, I.; Kollias, S.; Jueterbock, A.; Coyer, J.A.; Hoarau, G. Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal. R. Soc. Open Sci. 2016, 3, 150429. [Google Scholar] [CrossRef] [PubMed]
- Karsten, U.; Sawall, T.; Wiencke, C. A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol. Res. 1998, 46, 271–279. [Google Scholar]
- Karsten, U.; Sawall, T.; Hanelt, D.; Bischof, K.; Figueroa, F.L.; Flores-Moya, A.; Wiencke, C. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot. Mar. 1998, 41, 443–453. [Google Scholar] [CrossRef]
- Athukorala, Y.; Trang, S.; Kwok, C.; Yuan, Y.V. Antiproliferative and antioxidant activities and mycosporine-like amino acid profiles of wild-harvested and cultivated edible Canadian marine red macroalgae. Molecules 2016, 21, 119. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.; Sirois, M.; Tamigneaux, É. Evaluation of the in vitro biological activity of protein hydrolysates of the edible red alga, Palmaria palmata (dulse) harvested from the Gaspe coast and cultivated in tanks. J. Appl. Phycol. 2016, 5, 3101–3115. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; Paper, F.F.T., Ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Lopez-Cristoffanini, C.; Zapata, J.; Gaillard, F.; Potin, P.; Correa, J.A.; Contreras-Porcia, L. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales). Proteomics 2015, 15, 3954–3968. [Google Scholar] [CrossRef]
- Tee, M.Z.; Yong, Y.S.; Rodriges, K.F.; Yong, W.T.L. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales) under pH induced stress culture. Aquacult. Rep. 2015, 2, 112–116. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Ji, D.; Hang, N.; Xie, C. Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. J. Appl. Phycol. 2013, 26, 607–618. [Google Scholar] [CrossRef]
- Yotsukura, N.; Nagai, K.; Kimura, H.; Morimoto, K. Seasonal changes in proteomic profiles of Japanese kelp: Saccharina japonica (Laminariales, Phaeophyceae). J. Appl. Phycol. 2009, 22, 443–451. [Google Scholar] [CrossRef]
- Zou, H.X.; Pang, Q.Y.; Zhang, A.-Q.; Lin, L.-D.; Li, N.; Yan, X.-F. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme. Ecotoxicol. Environ. Saf. 2015, 111, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.K.; Timperio, A.M.; Zolla, L.; Bansal, V.; Shukla, R.; Rakwal, R. Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. J. Proteom. 2013, 93, 74–92. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, L.M.; Borelli, G.; Camargo, A.P.; de Assis, M.A.; de Ferraz, S.M.F.; Fiamenghi, M.B.; José, J.; Mofatto, L.S.; Nagamatsu, S.T.; Persinoti, G.F.; et al. Bioinformatics applied to biotechnology: A review towards bioenergy research. Biomass Bioenergy 2019, 123, 195–224. [Google Scholar] [CrossRef]
- Cole, A.J.; de Nys, R.; Paul, N.A. Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Res. 2015, 7, 58–65. [Google Scholar] [CrossRef]
- Marinho, G.S.; Holdt, S.L.; Angelidaki, I. Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. J. Appl. Phycol. 2015, 27, 1991–2000. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Harnedy, P.A.; Soler-Vila, A.; Edwards, M.D.; FitzGerald, R.J. The effect of time and origin of harvest on the in vitro biological activity of Palmaria palmata protein hydrolysates. Food Res. Intern. 2014, 62, 746–752. [Google Scholar] [CrossRef]
- Martínez, B.; Rico, J.M. Seasonal variation of p content and major n pools in Palmaria palmata (rhodophyta) 1. J. Phycol. 2002, 38, 1082–1089. [Google Scholar] [CrossRef]
- Wijesekara, I.; Lang, M.; Marty, C.; Gemin, M.-P.; Boulho, R.; Douzenel, P.; Wickramasinghe, I.; Bedoux, G.; Bourgougnon, N. Different extraction procedures and analysis of protein from Ulva sp. in Brittany, France. J. Appl. Phycol. 2017, 29, 2503–2511. [Google Scholar] [CrossRef]
- Chojnacka, K.; Saeid, A.; Witkowska, Z.; Tuhy, L. Biologically active compounds in seaweed extracts-the prospects for the application. Open Conf. Proc. J. 2012, 3, 20–28. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Chapter six—Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability Food and Non-Food Applications; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 125–140. [Google Scholar]
- Liao, W.R.; Lin, J.-Y.; Shieh, W.-Y.; Jeng, W.-L.; Huang, R. Antibiotic activity of lectins from marine algae against marine vibrios. J. Ind. Microbiol. Biotechnol. 2003, 30, 433–439. [Google Scholar] [CrossRef]
- Singh, R.S.; Thakur, S.R.; Bansal, P. Algal lectins as promising biomolecules for biomedical research. Crit. Rev. Microbiol. 2015, 41, 77–88. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Extraction of protein from the macroalga Palmaria palmata. LWT Food Sci. Technol. 2013, 51, 375–382. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive proteins, peptides, and amino acids from macroalgae (1). J. Phycol. 2011, 47, 218–232. [Google Scholar] [CrossRef]
- Bondu, S.; Bonnet, C.; Gaubert, J.; Deslandes, É.; Turgeon, S.L.; Beaulieu, L. Bioassay-guided fractionation approach for determination of protein precursors of proteolytic bioactive metabolites from macroalgae. J. Appl. Phycol. 2014, 27, 2059–2074. [Google Scholar] [CrossRef]
- Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L.-E.; Turgeon, S.L. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods 2015, 17, 685–697. [Google Scholar] [CrossRef]
- Furuta, T.; Miyabe, Y.; Yasui, H.; Kinoshita, Y.; Kishimura, H. Angiotensin I Converting Enzyme inhibitory peptides derived from phycobiliproteins of Dulse Palmaria palmata. Mar. Drugs 2016, 14, 32. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J. Appl. Phycol. 2013, 25, 1793–1803. [Google Scholar] [CrossRef]
- Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Res. Intern. 2017, 100, 416–422. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Mora-Soler, M.; Gallagher, E.; O’Connor, P.; Prieto, J.; Soler-Vila, A.; Hayes, M. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J. Agric. Food Chem. 2012, 60, 7421–7427. [Google Scholar] [CrossRef] [PubMed]
- Cian, R.E.; Martínez-Augustin, O.; Drago, S.R. Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Res. Intern. 2012, 49, 364–372. [Google Scholar] [CrossRef]
- Cian, R.E.; Alaiz, M.; Vioque, J.; Drago, S.R. Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. J. Appl. Phycol. 2013, 25, 1197–1206. [Google Scholar] [CrossRef]
- Qu, W.; Ma, H.; Pan, Z.; Luo, L.; Wang, Z.; He, R. Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chem. 2010, 123, 14–20. [Google Scholar] [CrossRef]
- Suetsuna, K. Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J. Mar. Biotechnol. 1998, 6, 163–167. [Google Scholar] [PubMed]
- Senevirathne, M.; Ahn, C.-B.; Je, J.-Y. Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities. Food Sci. Biotechnol. 2010, 19, 1551–1557. [Google Scholar] [CrossRef]
- Stack, J.; Tobin, P.R.; Gietl, A.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica. J. Appl. Phycol. 2017, 29, 2439–2450. [Google Scholar] [CrossRef]
- Mao, X.; Bai, L.; Fan, X.; Zhang, X. Anti-proliferation peptides from protein hydrolysates of Pyropia haitanensis. J. Appl. Phycol. 2017, 29, 1623–1633. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Mao, X.; Zhang, X. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochem. 2017, 60, 98–107. [Google Scholar] [CrossRef]
- Suetsuna, K. Separation and identification of angiotensin I-converting enzyme inhibitory peptides from peptic digest of Hizikia fusiformis protein. Bull. Jpn. Soc. Sci. Fish. 1998, 64, 862–866. [Google Scholar] [CrossRef]
- Suetsuna, K.; Maekawa, K.; Chen, J.R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 2004, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Suetsuna, K.; Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J. Nutr. Biochem. 2000, 11, 450–454. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Kim, E.-K.; Park, J.-S.; Yoon, H.-D.; Kim, K.-R.; Ahn, C.-B. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT-Food Sci. Technol. 2009, 42, 874–878. [Google Scholar] [CrossRef]
- Heo, S.-J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Biores. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.; Aluko, R.E.; Hossain, M.; Rai, D.K.; Hayes, M. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2014, 62, 8352–8356. [Google Scholar] [CrossRef]
- Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 2015, 172, 400–406. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Gallagher, E.; Doran, L.; Auty, M.; Prieto, J.; Hayes, M. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT Food Sci. Technol. 2014, 56, 398–405. [Google Scholar] [CrossRef]
- Cambri, G.; de Sousa, M.M.L.; de Miranda Fonseca, D.; Marchini, F.K.; da Silveira, J.L.M.; Paba, J. Analysis of the biotechnological potential of a Lentinus crinitus isolate in the light of its secretome. J. Proteome Res. 2016, 15, 4557–4568. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Smith, R.D.; Shen, Y. Advanced proteomic liquid chromatography. J Chromatogr. A 2012, 1261, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Righetti, P.G.; Boschetti, E. Global proteome analysis in plants by means of peptide libraries and applications. J. Proteomics 2016, 143, 3–14. [Google Scholar] [CrossRef]
- Wong, P.-F.; Tan, L.I.; Nawi, H.; AbuBakar, S. Proteomics of the Red Alga, Gracilaria Changii (Gracilariales, Rhodophyta). J. Phycol. 2006, 42, 113–120. [Google Scholar] [CrossRef]
- Contreras, L.; Ritter, A.; Dennett, G.; Boehmwald, F.; Guitton, N.; Pineau, C.; Moenne, A.; Potin, P.; Correa, J.A. Two-dimensional gel electrophoresis analysis of brown algal protein extracts. J. Phycol. 2008, 44, 1315–1321. [Google Scholar] [CrossRef]
- Du, H.; Liang, H.; Jiang, Y.; Qu, X.; Yan, H.; Liu, X. Proteome responses of Gracilaria lemaneiformis exposed to lead stress. Mar. Pollut. Bull. 2018, 135, 311–317. [Google Scholar] [CrossRef]
- Zhang, A.; Xu, T.; Zou, H.; Pang, Q. Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme. Aquat. Toxicol. 2015, 163, 1–15. [Google Scholar] [CrossRef]
- Kumagai, Y.; Miyabe, Y.; Takeda, T.; Adachi, K.; Yasui, H.; Kishimura, H. In Silico analysis of relationship between proteins from plastid genome of red alga Palmaria sp. (Japan) and Angiotensin I Converting Enzyme inhibitory peptides. Mar. Drugs 2019, 17, 190. [Google Scholar] [CrossRef]
- Manes, N.P.; Nita-Lazar, A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J. Proteomics 2018, 189, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Zatylny-Gaudin, C.; Fournier, V.; Corre, E.; Le Corgillé, G.; Bernay, B.; Henry, J. Transcriptomic and peptidomic analysis of protein hydrolysates from the white shrimp (L. vannamei). J. Biotechnol. 2014, 186, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Thakur, R.J.; Baghel, R.S.; Reddy, C.R.K.; Jha, B. Seaweed metabolomics: A new facet of functional genomics. Sea Plants 2014, 71, 31–52. [Google Scholar]
- Zhang, Y.; Wang, X.; Shan, T.; Pang, S.; Xu, N. Transcriptome profiling of the meristem tissue of Saccharina japonica (Phaeophyceae, Laminariales) under severe stress of copper. Mar. Genomics 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, S.; Valentin, K.; Frickenhaus, S.; Wiencke, C. Origin matters - Comparative transcriptomics in Saccharina latissima (Phaeophyceae). J. Exp. Mar. Biol. Ecol. 2016, 476, 22–30. [Google Scholar] [CrossRef]
- Kumar, A.; Elgawad, H.A.; Castellano, I.; Selim, S.; Beemster, G.T.S.; Asard, H.; Buia, C.; Palumbo, A. Effects of ocean acidification on the levels of primary and secondary metabolites in the brown macroalga Sargassum vulgare at different time scales. Sci. Total Environ. 2018, 643, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.-G.; Li, N.; Lin, L.-D.; Xu, T.; Zhang, X.; Wang, L.-H.; Zou, H.-X.; Wu, M.-J.; Yan, X.-F. Parallel analysis of proteins in brown seaweed Sargassum fusiforme responding to hyposalinity stress. Aquaculture 2016, 465, 189–197. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Liu, X.; Zhong, M.; Chen, W.; Wang, F.; Du, H. Response of Gracilaria lemaneiformis to nitrogen deprivation. Algal Res. 2018, 34, 82–96. [Google Scholar] [CrossRef]
- Dittami, S.M.; Scornet, D.; Petit, J.-L.; Ségurens, B.; Da Silva, C.; Corre, E.; Dondrup, M.; Glatting, K.-H.; König, R.; Sterck, L.; et al. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol. 2009, 10, R66. [Google Scholar] [CrossRef] [PubMed]
- Dittami, S.M.; Gravot, A.; Renault, D.; Goulitquer, S.; Eggert, A.; Bouchereau, A.; Boyen, C.; Tonon, T. Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ. 2011, 34, 629–642. [Google Scholar] [CrossRef]
- Cock, J.M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A.E.; Amoutzias, G.; Anthouard, V.; Artiguenave, F.; Aury, J.-M.; Badger, J.H.; et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 2010, 465, 617–621. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, L.S.; Gregoracci, G.B.; Silva, G.G.Z.; Salgado, L.T.; Filho, G.A.; Alves-Ferreira, M.; Pereira, R.C.; Thompson, F.L. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 2012, 13, 487. [Google Scholar] [CrossRef]
- Williamson, C.; Yesson, C.; Briscoe, A.G.; Brodie, J. Complete mitochondrial genome of the geniculate calcified red alga, Corallina officinalis (Corallinales, Rhodophyta). Mitochondr. DNA Part B 2016, 1, 326–327. [Google Scholar] [CrossRef]
- Collén, J.; Porcel, B.; Carré, W.; Ball, S.G.; Chaparro, C.; Tonon, T.; Barbeyron, T.; Michel, G.; Noel, B.; Valentin, K.; et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 2013, 110, 5247–5252. [Google Scholar] [CrossRef] [PubMed]
- De Clerck, O.; Kao, S.-M.; Bogaert, K.A.; Blomme, J.; Foflonker, F.; Kwantes, M.; Vancaester, E.; Vanderstraeten, E.; Aydogdu, E.; Boesger, J.; et al. Insights into the evolution of multicellularity from the sea lettuce genome. Curr. Biol. 2018, 28, 2921–2933. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, P.; Reddy, C.R.K.; Jha, B. Chapter Four—Salinity and Desiccation Induced Oxidative Stress Acclimation in Seaweeds. In Advances in Botanical Research; Bourgougnon, N., Ed.; Academic Press: Amsterdam, The Netherlands, 2014; pp. 91–123. [Google Scholar]
Macroalgae | Activity | References |
---|---|---|
Palmaria palmata (red algae) | Cardioprotective, antidiabetic, antioxidant | [46] |
Angiotensin converting enzyme (ACE) inhibitor, antioxidant | [20,33,43,45] | |
Antioxidant | [47] | |
Renin inhibitor | [48] | |
Porphyra columbina (red algae) | Antioxydant, ACE inhibitor | [49,50] |
Porphyra (Pyropia) yezoensis (red algae) | ACE inhibitor | [51,52] |
Porphyra (Pyropia) tenera (red algae) | Antioxidant, anti-acetylcholinesterase, anti-inflammatory | [53] |
Porphyra dioica (red algae) | Anti-hypertensive, antidiabetic, antioxidant | [54] |
Porphyra haitanesis (red algae) | Anti-proliferative | [55,56] |
Sargassum fusiformis (brown algae) | ACE inhibitor | [57] |
Undaria pinnatifida (brown algae) | ACE inhibitor | [58,59] |
Antioxidant | [60] | |
Ecklonia cava (brown algae) | Antioxidant | [61] |
Saccharina longicruris (brown algae) | Antibacterial | [44] |
Macroalgae | Proteomic Approaches | Generating Raw Data | Alignment and Identification | Data Analysis | Reference |
---|---|---|---|---|---|
Gracilaria lemaneiformis (red algae) | Proteins analyzed by MS by a bottom–up approach (smaller peptides derived from enzymatic digestion of proteins) | 2D-Electrophoresis; MALDI-TOF MS | Mascot aligner; MoverZ and NCBI non-redundant protein database | Protein identification was accepted with a MASCOT score higher than 60 with more than five matched peptides. The MASCOT protein search was performed via all plants’ database. | [70] |
Pyropia haitanensis (red algae) | Proteins analyzed by MS by a bottom–up approach | 2D-Electrophoresis; MALDI-TOF/TOF MS | Mascot aligner; NCBI and SwissProt database | According to the search engine parameters, scores greater than 65 (p < 0.05) were considered positive. | [25] |
Pyropia orbicularis (red algae) | Proteins analyzed by MS by a bottom–up approach | 2D-Electrophoresis; Nano-LC-MS/MS coupled on-line to a LTQ Orbitrap Discovery system mass spectrometer | PEAKS Studio software. This database included P. orbicularis ESTs, Chondrus crispus genes, and Ectocarpus siliculosus genes, BLAST-P in NCBI database | ExPASy Compute pI/MW tool; Protein functional classification using KEGG pathway analysis. The threshold was set to a minimal Significance of 1 × 10−3 and an identity percentage of greater than 25%. | [23] |
Sargassum fusiforme (brown algae) | Proteins analyzed by MS by a bottom–up approach | 2D-Electrophoresis; MALDI-TOF/TOF MS | Mascot aligner; NCBI non-redundant FASTA database and UniProt database | Protein functional classification using KEGG pathway analysis; Protein-protein association information evaluated with the STRING database against Phaeodactylum tricornutum database. Individual ion scores of more than 28 indicate identity or extensive homology (p < 0.05). | [71] |
Macroalgae | Planning and Data Generation | Transcriptome Assembly | Expression Quantification | Differential Expression | Reference |
---|---|---|---|---|---|
Saccharina japonica (brown algae) | Copper treatments were conducted by transferring the juvenile sporophytes to fresh seawater with final Cu2+ concentrations of 10, 100, and 200 μg L−1. Illumina Hiseq sequencing. | De novo transcriptome assembly with Trinity. Functional annotation using the basic local alignment search tool and a translated nucleotide query (BLASTX) against the non-redundant protein and non-redundant nucleotide databases of the NCBI, Protein family, SwissProt, eukaryotic Ortholog Groups (KOG), and the KEGG databases. Functional annotation by Gene Ontology (GO) was performed using Blast2GO software. | Transcript quantification with RSEM. Validation of the differentially expressed genes (DEGs) by RT-qPCR. | Compared with the control, the number of DEGs was 11,350 (4944 up- and 6406 downregulated) in the 200 μg L−1 treatment group and 2868 (1075 up- and 1793 downregulated) in the 100 μg L−1 treatment group, whereas much fewer DEGs were detected in the 10 μg L−1 treatment group. | [77] |
Laurencia dendroidea (red algae) | Three specimens of L. dendroidea collected in the intertidal zone during high tide. The EST sequences deposited for the class. Florideophyceae in the NCBI were downloaded and the reads were assembled using the TGICL software from TIGR. | The assembly was aligned against the Florideophyceae. EST NCBI database. Taxonomic and functional analysis performed on assembled sequences using the Newbler software, and annotated, using the MG-RAST server, through BLAST, against the GenBank, COG, KEGG and Subsystems databases. | PCR amplification. | A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of Rio de Janeiro state. | [78] |
Ectocarpus siliculosus (brown algae) | Three different stresses: (hyposaline, hypersaline, oxidative). 90,637 EST sequences used for the microarray design. | Sequences were annotated with KEGG orthology (KO) numbers using KOBAS and with GO terms using GOPET. Protein sequences corresponding to the assembled EST sequences were predicted using ORF predictor. | RT-qPCR validation of the microarray. | 70% of the expressed genes are regulated in response to at least one of these stressors. | [79] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaulieu, L. Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches. Molecules 2019, 24, 1708. https://doi.org/10.3390/molecules24091708
Beaulieu L. Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches. Molecules. 2019; 24(9):1708. https://doi.org/10.3390/molecules24091708
Chicago/Turabian StyleBeaulieu, Lucie. 2019. "Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches" Molecules 24, no. 9: 1708. https://doi.org/10.3390/molecules24091708
APA StyleBeaulieu, L. (2019). Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches. Molecules, 24(9), 1708. https://doi.org/10.3390/molecules24091708