Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of the Compounds
2.2. Larvicidal Activities
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material, Fermentation and Extraction
3.3. Isolation of Compounds 1 and 2
3.4. Larvicidal Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cui, F.; Raymond, M.; Qiao, C.L. Insecticide resistance in vector mosquitoes in China. Pest Manag. Sci. 2006, 62, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.C.; Liu, Q.Y.; Niu, C.; Liu, Z.L. Larvicidal activity of Illicium difengpi BN Chang (Schisandraceae) stem bark and its constituent compounds against Aedes aegypti L. Trop. J. Pharm. Res. 2015, 14, 103–109. [Google Scholar] [CrossRef]
- Giacoppo, J.O.S.; Carregal, J.B.; Junior, M.C.; Cunha, E.F.F.; Ramalho, T.C. Towards the understanding of tetrahydroquinolines action in Aedes aegypti: Larvicide or adulticide? Mol. Simul. 2017, 43, 121–133. [Google Scholar] [CrossRef]
- Fonseca-Gonzalez, I.; Quinones, M.L.; Lenhart, A.; Brogdon, W.G. Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Manag. Sci 2011, 67, 430–437. [Google Scholar] [CrossRef]
- Masi, M.; Maddau, L.; Linaldeddu, B.T.; Scanu, B.; Evidente, A.; Cimmino, A. Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Curr. Med. Chem. 2018, 25, 208–252. [Google Scholar] [CrossRef]
- Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, H.; Zhao, X.; Xu, X.; Di, Y.; Jiang, C.; Shi, J.; Shao, D.; Huang, Q.; Yang, H.; et al. Productioin of bioproducts by endophytic fungi: Chemical ecology, biotechnology applications, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2018, 102, 6279–6298. [Google Scholar] [CrossRef]
- Tian, J.; Liu, X.C.; Liu, Z.L.; Lai, D.; Zhou, L. Larvicidal spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. against Aedes albopictus. Pest. Manag. Sci. 2016, 72, 961–965. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, Y.; Gao, S.; Xu, L.; Zhao, J.; Shan, T.; He, W.; Zhou, L. Endophytic fungi from the hybrid ‘Neva’ of Populus deltoides Marsh × Populus nigra L. and their antimicrobial activity. Afr. J. Microbiol. Res. 2011, 5, 3924–3929. [Google Scholar]
- Mao, Z.; Lai, D.; Liu, X.; Fu, X.; Meng, J.; Wang, A.; Wang, X.; Sun, W.; Liu, Z.L.; Zhou, L.; et al. Dibenzo-α-pyrones: A new class of larvicidal metabolites against Aedes aegypti from the endophytic fungus Hyalodendriella sp. Ponipodef12. Pest. Manag. Sci. 2017, 73, 1478–1485. [Google Scholar] [CrossRef]
- Meng, X.; Mao, Z.; Lou, J.; Xu, L.; Zhong, L.; Peng, Y.; Zhou, L.; Wang, M. Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities. Molecules 2012, 17, 11303–11314. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, H.; Cao, Y.; Xu, D.; Mao, Z.; Mou, Y.; Meng, J.; Lai, D.; Liu, Y.; Zhou, L. Enhanced production of botrallin and TMC-264 with in situ macroporous resin adsorption in mycelial liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12. Molecules 2014, 19, 14221–14234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Z.; Luo, R.; Luo, H.; Tian, J.; Liu, H.; Yue, Y.; Wang, M.; Peng, Y.; Zhou, L. Separation and purification of bioactive botrallin and TMC-264 by a combination of HSCCC and semi-preparative HPLC from endophytic fungus Hyalodendriella sp. Ponipodef12. World J. Microbiol. Biotechnol. 2014, 30, 2533–2542. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Mao, Z.; Xu, D.; Zhang, X.; Wang, A.; Xie, R.; Zhou, L.; Liu, Y. Hyalodendriellins A-F, new 14-membered resorcylic acid lactones from the endophytic fungus Hyalodendriella sp. Ponipodef12. RSC Adv. 2016, 6, 108989–109000. [Google Scholar] [CrossRef]
- Singh, S.B.; Zink, D.L.; Goetz, M.A.; Dombrowski, A.W.; Polishook, J.D.; Hazuda, D.J. Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett. 1998, 39, 2243–2246. [Google Scholar] [CrossRef]
- Kato, N.; Nogawa, T.; Takita, R.; Kinugasa, K.; Kanai, M.; Uchiyama, M.; Osada, H.; Takahashi, S. Control of the stereochemical course of [4 + 2] cycloaddition during trans-decalin formation by Fsa2-family enzymes. Angew. Chem. Int. Edit. 2018, 57, 9754–9758. [Google Scholar] [CrossRef]
- Turos, E.; Audia, J.E.; Danishefsky, S.J. Total synthesis of the Fusarium toxin equisetin: Proof of the stereochemical relationship of the tetramate and terpenoid sectors. J. Am. Chem. Soc. 1989, 111, 8231–8236. [Google Scholar] [CrossRef]
- Sugie, Y.; Inagaki, S.; Kato, Y.; Nishida, H.; Pang, C.-H.; Saito, T.; Sakemi, S.; Dib-Hajj, F.; Mueller, J.P.; Sutcliffe, J.; et al. CJ-21,058, a new SecA inhibitor isolated from a fungus. J. Antibiot. 2002, 55, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Hazuda, D.; Blau, C.U.; Felock, P.; Hastings, J.; Pramanik, B.; Wolfe, A.; Bushman, F.; Farnet, C.; Goetz, M.; Williams, M.; et al. Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antiviral Chem. Chemother. 1999, 10, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Herath, K.; Jayasuriya, H.; Zink, D.L.; Sigmund, J.; Vicente, F.; De la Cruz, M.; Basilio, A.; Bills, G.F.; Polishook, J.D.; Donald, R.; et al. Isolation, structure elucidation, and antibacterial activity of methiosetin, a tetramic acid from a tropical sooty mold (Capnodium sp.). J. Nat. Prod. 2012, 75, 420–424. [Google Scholar] [CrossRef]
- Inokoshi, J.; Shigeta, N.; Fukuda, T.; Uchida, R.; Nonaka, K.; Masuma, R.; Tomoda, H. Epi-trichosetin, a new undecaprenyl pyrophosphate synthase inhibitor, produced by Fusarium oxysporum FKI-4553. J. Antibiot. 2013, 66, 549. [Google Scholar] [CrossRef] [PubMed]
- Jadulco, R.C.; Koch, M.; Kakule, T.B.; Schmidt, E.W.; Orendt, A.; He, H.; Janso, J.E.; Carter, G.T.; Larson, E.C.; Pond, C.; et al. Isolation of pyrrolocins A-C: Cis- and trans-decalin tetramic acid antibiotics from an endophytic fungal-derived pathway. J. Nat. Prod. 2014, 77, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Nogawa, T.; Kato, N.; Shimizu, T.; Okano, A.; Futamura, Y.; Takahashi, S.; Osada, H. Wakodecalines A and B, new decaline metabolites isolated from a fungus Pyrenochaetopsis sp. RK10-F058. J. Antibiot. 2018, 71, 123. [Google Scholar] [CrossRef] [PubMed]
- King, J.B.; Carter, A.C.; Dai, W.; Lee, J.W.; Kil, Y.-S.; Du, L.; Helff, S.K.; Cai, S.; Huddle, B.C.; Cichewicz, R.H. Design and application of a high-throughput, high-content screening system for natural product inhibitors of the human parasite Trichomonas vaginalis. ACS Infect. Dis. 2019, 5, 1456–1470. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, M. Probit analysis of preference data. Appl. Entomol. Zool. 1998, 33, 339–347. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds 1 and 2 are available from the authors. |
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH, Multi. (J in Hz) | δC, Type | δH, Multi. (J in Hz) | |
1 | 199.0, C | - | 199.2, C | - |
2 | 49.4, C | - | 49.5, C | - |
3 | 49.4, CH | 3.06, m | 49.3, CH | 3.07, m |
4 | 132.0, C | - | 132.0, C | - |
5 | 125.6, CH | 5.15, s | 125.6, CH | 5.16, s |
6 | 39.0, CH | 1.82, m | 39.2, CH | 1.82, m |
7 | 42.6, CH2 | 1.78, m 0.87, m | 42.5, CH2 | 1.78, m 0.87, m |
8 | 33.5, CH | 1.50, m | 33.5, CH | 1.50, m |
9 | 35.8, CH2 | 1.75, m 1.11, m | 35.8, CH2 | 1.75, m 1.11, m |
10 | 28.3, CH2 | 1.95, br. d (11.2) 1.02, m | 28.2, CH2 | 1.96, br. d (11.9) 1.02, m |
11 | 39.7, CH | 1.66, m | 39.7, CH | 1.67, m |
12 | 13.8, CH3 | 1.42, s | 13.7, CH3 | 1.40, s |
13 | 130.6, CH | 5.11, m | 130.6, CH | 5.12, m |
14 | 127.7, CH | 5.23, dq (15.4, 6.0) | 127.5, CH | 5.24, m |
15 | 17.8, CH3 | 1.53, d (6.0) | 17.9, CH3 | 1.55, d (5.7) |
16 | 22.2, CH3 | 1.60, s | 22.2, CH3 | 1.59, s |
17 | 22.5, CH3 | 0.91, d (6.7) | 22.5, CH3 | 0.91, d (6.4) |
2′ | 177.1, C | - | 177.2, C | - |
3′ | 100.2, C | - | 99.9, C | - |
4′ | 190.7, C | - | 190.5, C | - |
5′ | 66.2, CH | 3.65, br. t (4.4) | 66.7, CH | 3.62, t (4.4) |
6′ | 60.2, CH2 | 4.06, br. dd (11.5, 3.7) 3.85, dd (11.3, 5.0) | 60.5, CH2 | 4.01, dd (11.5, 3.7) 3.88, br.dd (11.0, 4.0) |
7′ | 27.2, CH3 | 3.04, s | 27.3, CH3 | 3.05, s |
1-OH | 17.26, br. s | - |
Position | δC | δH | ||||
---|---|---|---|---|---|---|
1 | 2 | Phomasetin a | 1 | 2 | Phomasetin a | |
1 | 199.0 | 199.2 | 199.2 | - | - | - |
2′ | 177.1 | 177.2 | 177.3 | - | - | - |
3′ | 100.2 | 99.9 | 100.1 | - | - | - |
4′ | 190.7 | 190.5 | 190.8 | - | - | - |
5′ | 66.2 | 66.7 | 66.9 | 3.65, br. t | 3.62, t | 3.60, brs |
6′ | 60.2 | 60.5 | 60.6 | 4.06, br. dd 3.85, dd | 4.01, dd 3.88, br. dd | 3.99, m 3.86, m |
7′ | 27.2 | 27.3 | 27.5 | 3.04, s | 3.05, s | 3.01, s |
Compound | LC50 (μg/mL) (95% CL) | LC90 (μg/mL) (95% CL) | Slope ± SD | x2 |
---|---|---|---|---|
1 | 5.93 (4.72–7.35) | 20.99 (15.49–33.28) | 2.33 ± 0.30 | 6.54 |
2 | 10.31 (8.52–12.31) | 28.56 (22.31–41.68) | 2.90 ± 0.38 | 9.98 |
Rotenonea | 3.49 (2.85–4.19) | 10.36 (8.04–15.22) | 2.71 ± 0.36 | 6.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Wang, W.; Su, R.; Gu, G.; Liu, Z.L.; Lai, D.; Zhou, L. Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12. Molecules 2020, 25, 114. https://doi.org/10.3390/molecules25010114
Mao Z, Wang W, Su R, Gu G, Liu ZL, Lai D, Zhou L. Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12. Molecules. 2020; 25(1):114. https://doi.org/10.3390/molecules25010114
Chicago/Turabian StyleMao, Ziling, Weixuan Wang, Ruixue Su, Gan Gu, Zhi Long Liu, Daowan Lai, and Ligang Zhou. 2020. "Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12" Molecules 25, no. 1: 114. https://doi.org/10.3390/molecules25010114
APA StyleMao, Z., Wang, W., Su, R., Gu, G., Liu, Z. L., Lai, D., & Zhou, L. (2020). Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12. Molecules, 25(1), 114. https://doi.org/10.3390/molecules25010114