Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Essential Oils
2.2. Anti-Bacterial Activity of Essential Oils
2.3. Antioxidant Capacity of Essential Oils
3. Materials and Methods
3.1. Plant Material and Extraction of Essential Oils
3.2. Gas Chromatography-Mass Spectrometry Analysis
3.3. Evaluation of Anti-Bacterial Activity
3.4. Evaluation of Antioxidant Capacity
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pridgeon, J.W.; Klesius, P.H. Major bacterial diseases in aquaculture and their vaccine development. Cab Rev. 2012, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rigos, G.; Troisi, G.M. Anti-bacterial agents in Mediterranean finfish farming: A synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Rev. Fish Biol. Fish. 2005, 15, 53–73. [Google Scholar] [CrossRef]
- Samanidou, V.F.; Evaggelopoulou, E.N. Analytical strategies to determine antibiotic residues in fish. J. Sep. Sci. 2007, 30, 2549–2569. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture—Use, abuse and alternatives. Health Environ. Aquac. 2012, 159. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, P.; Mardones, P.; Opazo, R.; Espejo, R.; Romero, J. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. J. Aquat. Anim. Health 2008, 20, 177–183. [Google Scholar] [CrossRef]
- Romero, J.; Ringø, E.; Merrifield, D.L. The gut microbiota of fish. Aquac. Nutr. 2014, 75–100. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [Green Version]
- Sommerset, I.; Krossøy, B.; Biering, E.; Frost, P. Vaccines for fish in aquaculture. Expert Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef]
- Mulero, I.; Sepulcre, M.P.; Fuentes, I.; García-Alcázar, A.; Meseguer, J.; García-Ayala, A.; Mulero, V. Vaccination of larvae of the bony fish gilthead seabream reveals a lack of correlation between lymphocyte development and adaptive immunocompetence. Mol. Immunol. 2008, 45, 2981–2989. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phyther. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid.-Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some Mediterranean essential oils on human health. Biomed. Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef]
- Sutili, F.J.; Gatlin, D.M.I.; Heinzmann, B.M.; Baldisserotto, B. Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Rev. Aquac. 2017, 10, 716–726. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Awad, E.; Awaad, A. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 2017, 67, 40–54. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- da Cunha, J.A.; Heinzmann, B.M.; Baldisserotto, B. The effects of essential oils and their major compounds on fish bacterial pathogens—A review. J. Appl. Microbiol. 2018, 125, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Misharina, T.A.; Terenina, M.B.; Krikunova, N.I. Antioxidant properties of essential oils. Appl. Biochem. Microbiol. 2009, 45, 642–647. [Google Scholar] [CrossRef]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Yao, H.; Abbass, A. Anti-oxidative effects of some dietary supplements on Yellow perch (Perca flavescens) exposed to different physical stressors. Aquac. Rep. 2017, 8, 21–30. [Google Scholar] [CrossRef]
- Milina, R.; Mustafa, Z.; Stanev, S.; Zvezdova, D.; Stoeva, S. Headspace gas chromatographic analysis of Bulgarian Lavandula Angustifolia mill Herbs. I. optimization of the analysis conditions. Нaучни Трудoве Нa Русенския Университет (Sci. Works Univ. (Bulgarian)) 2012, 51, 50–56. [Google Scholar]
- Zagorcheva, T.; Stanevs, S.; Rusanov, K.; Atanassov, I. Comparitive GC/MS analysis of lavender (Lavandula angustifolaila Mill.) inflorescence and essential oil volatiles. J. Agric. Sci. Technol. 2013, 5, 459–462. [Google Scholar]
- Stanev, S.; Zagorcheva, T.; Atanassov, I. Lavender cultivation in Bulgaria—21st century developments, breeding challenges and opportunities. Bulg. J. Agric. Sci. 2016, 22, 584–590. [Google Scholar]
- Salas, J.B.; Téllez, T.R.; Alonso, M.J.P.; Pardo, F.M.V.; Capdevila, M.; de los, Á.C.; Rodríguez, C.G. Chemical composition and antioxidant activity of the essential oil of Thymbra capitata (L.) Cav. in Spain. Acta Bot. Gall. 2010, 157, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Ventrella, D.; Barone, F.; Filippini, G.; Benvenuti, S.; Pisi, A.; Scozzoli, M.; Bacci, M.L. Thymbra capitata (L.) cav. and Rosmarinus officinalis (L.) essential oils: In vitro effects and toxicity on swine spermatozoa. Molecules 2017, 22, 2162. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Adámez, J.; Garrido, M.; Bote, M.E.; Fuentes-Pérez, M.C.; Espino, J.; Martín-Vertedor, D. Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. J. Food Sci. Technol. 2017, 54, 1857–1865. [Google Scholar] [CrossRef]
- Vokou, D.; Kokkini, S.; Bessiere, J.-M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E.; Lanaras, T. Essential oil composition of Greek (Origanum vulgare ssp. hirtum) and Turkish (O. onites) oregano: A tool for their distinction. J. Essent. Oil Res. 2004, 16, 334–338. [Google Scholar] [CrossRef]
- El Beyrouthy, M.; Arnold-Apostolides, N.; Cazier, F.; Najm, S.; Abou Jaoudeh, C.; Labaki, M.; Dhifi, W.; Abou Kais, A. Chemical composition of the essential oil of aerial parts of Satureja Thymbra, L. growing wild in Lebanon. Acta Hortic. 2013, 997, 59–66. [Google Scholar] [CrossRef]
- Piras, A.; Cocco, V.; Falconieri, D.; Porcedda, S.; Marongiu, B.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the volatile oil from Satureja thymbra by supercritical carbon dioxide extraction: Chemical composition and biological activity. Nat. Prod. Commun. 2011, 6, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Karousou, R.; Koureas, D.N.; Kokkini, S. Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry 2005, 66, 2668–2673. [Google Scholar] [CrossRef]
- Telci, I.; Demirtas, I.; Sahin, A. Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruits during stages of maturity. Ind. Crop. Prod. 2009, 30, 126–130. [Google Scholar] [CrossRef]
- Diao, W.-R.; Hu, Q.-P.; Zhang, H.; Xu, J.-G. Chemical composition, anti-bacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A.; Seba, N.; Chamouni, N. Chemical composition and larvicidal activity of Algerian Foeniculum vulgare seed essential oil. Arab. J. Chem. 2014, 7, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Shahmohamadi, R.; Sariri, R.; Rasa, M.; Ghafoori, H.; Aghamali, M.; Nasuti, S.; Tahery, M. Chemical composition and antimicrobial activity of flowering aerial parts Mentha pulegium from Gilan. Pharmacologyonline 2011, 3, 651–659. [Google Scholar]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, anti-bacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
- Zanjani, M.A.K.; Mohammadi, N.; Zojaji, M.; Bakhoda, H. Chemical composition of the essential oil of Mentha pulegium L. and its antimicrobial activity on Proteus mirabilis, Bacillus subtilis and Zygosaccharomyces rouxii. J. Food Biosci. Technol. 2015, 5, 31–40. [Google Scholar]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Tu, X.-F.; Hu, F.; Thakur, K.; Li, X.-L.; Zhang, Y.-S.; Wei, Z.-J. Comparison of anti-bacterial effects and fumigant toxicity of essential oils extracted from different plants. Ind. Crop. Prod. 2018, 124, 192–200. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- La Storia, A.; Ercolini, D.; Marinello, F.; Di Pasqua, R.; Villani, F.; Mauriello, G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res. Microbiol. 2011, 162, 164–172. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Anti-bacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hadian, J.; Hatami, M.; Salehi-Arjomand, H.; Aliahmadi, A. Comparison of chemical compounds and antioxidant and anti-bacterial properties of various Satureja species growing wild in Iran. J. Med. Plants 2016, 15, 58–72. [Google Scholar]
- Burt, S. Essential oils: Their anti-bacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Ran, C.; Hu, J.; Liu, W.; Liu, Z.; He, S.; Dan, B.C.T.; Diem, N.N.; Ooi, E.L.; Zhou, Z. Thymol and carvacrol affect hybrid tilapia through the combination of direct stimulation and an intestinal microbiota-mediated effect: Insights from a germ-free zebrafish model. J. Nutr. 2016, 146, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Polednik, K.M.; Koch, A.C.; Felzien, L.K. Effects of essential oil from Thymus vulgaris on viability and inflammation in zebrafish embryos. Zebrafish 2018, 15, 361–371. [Google Scholar] [CrossRef]
- Volpatti, D.; Chiara, B.; Tulli, F.; Marco, G. Growth parameters, innate immune response and resistance to Listonella (Vibrio) anguillarum of Dicentrarchus labrax fed carvacrol supplemented diets. Aquac. Res. 2013, 45, 31–44. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- de Oliveira, T.M.; de Carvalho, R.B.F.; da Costa, I.H.F.; de Oliveira, G.A.L.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils: A critical review. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear tempera¬ture programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Robert, P.; Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Smyrli, M.; Prapas, A.; Rigos, G.; Kokkari, C.; Pavlidis, M.; Katharios, P. Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathol. 2017, 52, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Katharios, P.; Kokkari, C.; Dourala, N.; Smyrli, M. First report of Edwardsiellosis in cage-cultured sharpsnout sea bream, Diplodus puntazzo from the Mediterranean. BMC Vet. Res. 2015, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Katharios, P.; Kalatzis, P.G.; Kokkari, C.; Pavlidis, M.; Wang, Q. Characterization of a highly virulent Edwardsiella anguillarum strain isolated from Greek aquaculture, and a spontaneously induced prophage therein. Front. Microbiol. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.; D’Alvise, P.; Kalatzis, P.G.; Kokkari, C.; Middelboe, M.; Gram, L.; Liu, S.; Katharios, P. Draft genome sequences of Vibrio alginolyticus strains V1 and V2, opportunistic marine pathogens. Genome Announc. 2015, 3, e00729-15. [Google Scholar] [CrossRef] [Green Version]
- Mandalakis, M.; Gavriilidou, A.; Polymenakou, P.N.; Christakis, C.A.; Nomikou, P.; Medvecký, M.; Kilias, S.P.; Kentouri, M.; Kotoulas, G.; Magoulas, A. Microbial strains isolated from CO2-venting Kolumbo submarine volcano show enhanced co-tolerance to acidity and antibiotics. Mar. Env. Res. 2019, 144, 102–110. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Özyürek, M.; Bektaşoǧlu, B.; Güçlü, K.; Güngör, N.; Apak, R. Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone-water solution containing 2% methyl-β-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method. Anal. Chim. Acta 2008, 630, 28–39. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Sözgen-Başkan, K.; Erçaǧ, E.; Çelik, S.E.; Baki, S.; Yildiz, L.; Karaman, Ş.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
Compound Class | Lamiaceae | Apiaceae | Asteraceae | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pennyroyal a | Pennyroyal b | Lavender | Greek Oregano | Greek Sage | Rosemary | Spanish Oregano | Savory | Lemon Balm | Fennel | Rock Samphire | Wild Carrot | Chamomile | |
Monoterpene hydrocarbons | 1.2 | 3.4 | 6.9 | 16.1 | 15.6 | 24.8 | 47.0 | 52.2 | 1.6 | 0.0 | 93.9 | 38.3 | 0.0 |
Oxygenated monoterpenes | 91.3 | 90.0 | 76.5 | 74.1 | 69.0 | 64.6 | 44.1 | 36.0 | 29.6 | 95.0 | 4.1 | 14.8 | 1.0 |
Sesquiterpene hydrocarbons | 0.0 | 1.8 | 4.9 | 0.0 | 8.5 | 3.7 | 3.4 | 6.9 | 53.9 | 0.0 | 0.0 | 30.5 | 40.1 |
Oxygenated sesquiterpenes | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.7 | 0.0 | 0.0 | 0.0 | 51.3 |
Other compounds | 2.0 | 0.0 | 4.4 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 |
Total identified | 94.5 | 95.2 | 92.7 | 90.2 | 93.1 | 93.1 | 95.5 | 95.1 | 88.8 | 95.0 | 98.0 | 83.6 | 97.2 |
Material | Bacterial Pathogens d | ||||||||
---|---|---|---|---|---|---|---|---|---|
Aeromonas veronii bv. sobria (NS2) | Aeromonas veronii bv. sobria (NS22) | Aeromonas veronii bv. sobria (PDB) | Aeromonas veronii bv. sobria (NS13) | Vibrio anguillarum (Vak) | Vibrio harveyi (VhP1) | Vibrio alginolyticus (V1) | Edwardsiella anguillarum (EA011113) | Photobacterium damselae subsp. Piscicida (PdKef) | |
Pennyroyal a | 315 (±17) | 298 (±9) | 300 (±9) | 283 (±24) | 127 (±11) | 310 (±7) | 375 (±4) | 193 (±27) | 34 (±2) |
Pennyroyal b | 333 (±13) | 348 (±5) | 379 (±1) | 346 (±9) | 152 (±5) | 369 (±10) | n.d.c | 243 (±15) | 26 (±4) |
Lavender | 302 (±64) | 311 (±96) | 328 (±116) | 350 (±85) | 124 (±26) | 335 (±98) | n.d.c | 170 (±25) | 27 (±2) |
Greek oregano | 64 (±3) | 61 (±1) | 61 (±1) | 67 (±1) | 48 (±2) | 59 (±4) | 85 (±5) | 52 (±3) | 27 (±2) |
Greek sage | 340 (±9) | 233 (±12) | 309 (±15) | 330 (±27) | 71 (±4) | 393 (±23) | 733 (±157) | 102 (±10) | 32 (±7) |
Rosemary | 244 (±37) | 110 (±10) | 180 (±17) | 232 (±16) | 52 (±6) | 162 (±33) | 319 (±11) | 81 (±2) | 30 (±3) |
Spanish oregano | 69 (±2) | 58 (±2) | 62 (±0) | 63 (±1) | 31 (±1) | 68 (±2) | 88 (±2) | 49 (±3) | 26 (±1) |
Savoury | 70 (±6) | 58 (±0) | 63 (±0) | 64 (±8) | 31 (±2) | 63 (±5) | 94 (±5) | 52 (±1) | 26 (±1) |
Lemon balm | 360 (±13) | 302 (±4) | 324 (±2) | 274 (±26) | 64 (±3) | 236 (±10) | 338 (±22) | 53 (±4) | 20 (±1) |
Fennel | 275 (±11) | 330 (±18) | 448 (±4) | 230 (±15) | 160 (±11) | 306 (±9) | 527 (±39) | 223 (±30) | 71 (±16) |
Wild carrot | 185 (±16) | 124 (±0) | 187 (±2) | 143 (±11) | 19 (±1) | 57 (±12) | 138 (±13) | 32 (±2) | 16 (±0) |
Rock samphire | 280 (±3) | 261 (±9) | 360 (±3) | 365 (±11) | 152 (±17) | 223 (±15) | 413 (±5) | 169 (±5) | 46 (±3) |
Chamomile | 985 (±86) | 904 (±23) | 966 (±84) | 598 (±29) | 389 (±31) | 632 (±20) | n.d. c | 339 (±10) | 173 (±56) |
Florfenicol e | 0.36 ± 0.03 | 0.30 ± 0.01 | 0.37 ± 0.01 | 0.26 ± 0.01 | 0.46 ± 0.01 | 0.67 ± 0.06 | 0.53 ± 0.04 | 0.24 ± 0.02 | 0.33 ± 0.03 |
Oxytetracycline e | 0.061 ± 0.002 | 0.045 ± 0.001 | 0.072 ± 0.002 | 0.057 ± 0.005 | 0.046 ± 0.003 | 0.093 ± 0.002 | 0.082 ± 0.005 | 0.115 ± 0.001 | 0.071 ± 0.007 |
Essential Oil | CUPRAC | ABTS | ORAC |
---|---|---|---|
Pennyroyal a | 44 (±5) | 154 (±15) | 2818 (±512) |
Pennyroyal b | 37 (±1) | 32 (±2) | 777 (±43) |
Lavender | 32 (±0.1) | 5.6 (±1) | 1698 (±100) |
Greek oregano | 1441 (±271) | 5879 (±325) | 4147 (±578) |
Greek sage | 70 (±0.1) | 4.1 (±0.1) | 747 (±88) |
Rosemary | 25 (±3) | 2.7 (±0.4) | 854 (±120) |
Spanish oregano | 2733 (±264) | 5072 (±253) | 5933 (±614) |
Savoury | 931 (±136) | 2591 (±14) | 4025 (±203) |
Lemon balm | 98 (±7) | 68 (±5) | 2488 (±171) |
Fennel | 62 (±1) | 38 (±1) | 2389 (±162) |
Wild carrot | 44 (±4) | 13 (±2) | 2560 (±130) |
Rock samphire | 184 (±3) | 30 (±4) | 1283 (±74) |
Chamomile | 13 (±2) | 7.4 (±0.2) | 702 (±125) |
Common Name | Scientific Name (Family) | Cultivation Area | Abbreviation |
---|---|---|---|
Pennyroyal | Mentha pulegium (Lamiaceae) | Ikaria | MP-1 |
Pennyroyal | Mentha pulegium (Lamiaceae) | Thessaloniki | MP-2 |
Lavender | Lavandula angustifolia ‘hemus’ (Lamiaceae) | Grevena | LA |
Greek oregano | Origanum vulgare subsp. hirtum (Lamiaceae) | Ptolemaida | OVH |
Greek sage | Salvia fruticosa (Lamiaceae) | Ikaria | SF |
Rosemary | Rosmarinum officinalis (Lamiaceae) | Ptolemaida | RO |
Spanish oregano | Thymbra capitata (Lamiaceae) | Ikaria | TC |
Savoury | Satureja thymbra (Lamiaceae) | Ikaria | ST |
Lemon balm | Melissa officinalis (Lamiaceae) | Ptolemaida | MO |
Fennel | Foeniculum vulgare (Apiaceae) | Thessaloniki | FV |
Wild carrot | Daucus carota (Apiaceae) | Ikaria * | DC |
Rock samphire | Crithmum maritimum (Apiaceae) | Thessaloniki | CM |
Chamomile | Matricaria chamomilla (Asteraceae) | Thessaloniki | MC |
Bacterial Species | Strain Code | Aquaculture Location | Fish Species (Common Name) | Fish Species (Scientific Name) | Culture Medium |
---|---|---|---|---|---|
Aeromonas veronii bv. sobria | NS2 | Argolis | European seabass | Dicentrarchus labrax | BHI a |
Aeromonas veronii bv. sobria | NS22 | Peloponnese | European seabass | Dicentrarchus labrax | BHI a |
Aeromonas veronii bv. sobria | PDB | Argolis | European seabass | Dicentrarchus labrax | BHI a |
Aeromonas veronii bv. sobria | NS13 | Argolis | European seabass | Dicentrarchus labrax | BHI a |
Vibrio anguillarum | Vak | Cephalonia | European seabass | Dicentrarchus labrax | TSA b |
Vibrio harveyi | VhP1 | Kalymnos | European seabass | Dicentrarchus labrax | TSA b |
Vibrio alginolyticus | V1 | Crete | gilthead seabream | Sparus aurata | TSA b |
Edwardsiella anguillarum | EA011113 | Saronikos | sharpsnout seabream | Diplodus puntazzo | LB c |
Photobacterium damselae subsp. piscicida | PdKef | Lefkada | common seabream | Pagrus pagrus | LB c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, T.I.; Mandalakis, M.; Krigas, N.; Vézignol, T.; Lazari, D.; Katharios, P.; Dailianis, T.; Antonopoulou, E. Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. Molecules 2020, 25, 148. https://doi.org/10.3390/molecules25010148
Anastasiou TI, Mandalakis M, Krigas N, Vézignol T, Lazari D, Katharios P, Dailianis T, Antonopoulou E. Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. Molecules. 2020; 25(1):148. https://doi.org/10.3390/molecules25010148
Chicago/Turabian StyleAnastasiou, Thekla I., Manolis Mandalakis, Nikos Krigas, Thomas Vézignol, Diamanto Lazari, Pantelis Katharios, Thanos Dailianis, and Efthimia Antonopoulou. 2020. "Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens" Molecules 25, no. 1: 148. https://doi.org/10.3390/molecules25010148
APA StyleAnastasiou, T. I., Mandalakis, M., Krigas, N., Vézignol, T., Lazari, D., Katharios, P., Dailianis, T., & Antonopoulou, E. (2020). Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. Molecules, 25(1), 148. https://doi.org/10.3390/molecules25010148