Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. SAR of [1,2,4]Triazole Derivatives Using Enzyme Inhibitory Assays
3. Materials and Methods
3.1. Synthesis
General Procedure 1: SOCl2-Mediated Ester Formation
General Procedure 2: The Formation of Hydrazide
General Procedure 3: Ammonium Thiocyanate-Involved Ring Closing Reaction
General Procedure 4: Dibromoalkane-Involved Ring Closing Reaction
3.2. Inhibition Assays
3.3. Molecular Docking Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van Boeckel:, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 11, 381–393. [Google Scholar] [CrossRef]
- Brown, D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov. 2015, 14, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Garber, K. A β-lactamase inhibitor revival provides new hope for old antibiotics. Nat. Rev. Drug Discov. 2015, 14, 445–447. [Google Scholar] [CrossRef]
- Crowder, M.W.; Spencer, J.; Vila, A.J. Metallo-β-lactamases: Novel Weaponry for Antibiotic Resistance in Bacteria. Acc. Chem. Res. 2006, 39, 721–728. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-beta-lactamase antibiotic resistance. Nature 2014, 510, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Van Berkel, S.S.; Brem, J.; Rydzik, A.M.; Salimraj, R.; Cain, R.; Verma, A.; Owens, R.J.; Fishwick, C.W.G.; Spencer, J.; Schofield, C.J. Assay Platform for Clinically Relevant Metallo-β-lactamases. J. Med. Chem. 2013, 56, 6945–6953. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Y.; Abboud, M.I.; Markoulides, M.S.; Brem, J.; Schofield, C.J. The road to avibactam: The first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med. Chem. 2016, 8, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Abboud, M.I.; Hinchliffe, P.; Brem, J.; Macsics, R.; Pfeffer, I.; Makena, A.; Umland, K.-D.; Rydzik, A.M.; Li, G.-B.; Spencer, J.; et al. 19F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew. Chem. Int. Ed. 2017, 56, 3862–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Jing, L.; Yu, Z.J.; Wu, C.; Zheng, Y.; Zhang, E.; Chen, Q.; Yu, Y.; Guo, L.; Wu, Y.; et al. ((S)-3-Mercapto-2-methylpropanamido)acetic acid derivatives as metallo-beta-lactamase inhibitors: Synthesis, kinetic and crystallographic studies. Eur. J. Med. Chem. 2018, 145, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Meziane-Cherif, D.; Courvalin, P. To the rescue of old drugs. Nature 2014, 510, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.-C.; Cheng, Z.; Fast, W.; Bonomo, R.A.; Crowder, M.W. The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters. Trends Pharmacol. Sci. 2018, 39, 635–647. [Google Scholar] [CrossRef]
- Wang, M.M.; Chu, W.C.; Yang, Y.; Yang, Q.Q.; Qin, S.S.; Zhang, E. Dithiocarbamates: Efficient metallo-beta-lactamase inhibitors with good antibacterial activity when combined with meropenem. Bioorganic Med. Chem. Lett. 2018, 28, 3436–3440. [Google Scholar] [CrossRef]
- Arjomandi, O.K.; Hussein, W.M.; Vella, P.; Yusof, Y.; Sidjabat, H.E.; Schenk, G.; McGeary, R.P. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur. J. Med. Chem. 2016, 114, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Brem, J.; van Berkel, S.S.; Zollman, D.; Lee, S.Y.; Gileadi, O.; McHugh, P.J.; Walsh, T.R.; McDonough, M.A.; Schofield, C.J. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrob. Agents Chemother. 2016, 60, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Hinchliffe, P.; González, M.M.; Mojica, M.F.; González, J.M.; Castillo, V.; Saiz, C.; Kosmopoulou, M.; Tooke, C.L.; Llarrull, L.I.; Mahler, G.; et al. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc. Natl. Acad. Sci. USA 2016, 113, E3745–E3754. [Google Scholar] [CrossRef] [Green Version]
- Skagseth, S.; Akhter, S.; Paulsen, M.H.; Muhammad, Z.; Lauksund, S.; Samuelsen, Ø.; Leiros, H.-K.S.; Bayer, A. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur. J. Med. Chem. 2017, 135, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Spyrakis, F.; Celenza, G.; Marcoccia, F.; Santucci, M.; Cross, S.; Bellio, P.; Cendron, L.; Perilli, M.; Tondi, D. Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo-beta-lactamase-1. ACS Med. Chem. Lett. 2018, 9, 45–50. [Google Scholar] [CrossRef]
- Krajnc, A.; Brem, J.; Hinchliffe, P.; Calvopina, K.; Panduwawala, T.D.; Lang, P.A.; Kamps, J.; Tyrrell, J.M.; Widlake, E.; Saward, B.G.; et al. Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-beta-Lactamases. J. Med. Chem. 2019, 62, 8544–8556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linciano, P.; Cendron, L.; Gianquinto, E.; Spyrakis, F.; Tondi, D. Ten Years with New Delhi Metallo-beta-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect. Dis. 2019, 5, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Liu, S.; Yu, Z.J.; Lei, Y.; Huang, M.Y.; Yan, Y.H.; Ma, Q.; Zheng, Y.; Deng, H.; Sun, Y.; et al. Structure-Based Development of (1-(3′-Mercaptopropanamido)methyl)boronic Acid Derived Broad-Spectrum, Dual-Action Inhibitors of Metallo- and Serine-beta-lactamases. J. Med. Chem. 2019, 62, 7160–7184. [Google Scholar] [CrossRef] [PubMed]
- Nauton, L.; Kahn, R.; Garau, G.; Hernandez, J.F.; Dideberg, O. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. J. Mol. Biol. 2008, 375, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Weide, T.; Saldanha, S.A.; Minond, D.; Spicer, T.P.; Fotsing, J.R.; Spaargaren, M.; Frère, J.-M.; Bebrone, C.; Sharpless, K.B.; Hodder, P.S.; et al. NH-1,2,3-Triazole Inhibitors of the VIM-2 Metallo-β-Lactamase. ACS Med. Chem. Lett. 2010, 1, 150–154. [Google Scholar] [CrossRef]
- Yang, S.K.; Kang, J.S.; Oelschlaeger, P.; Yang, K.W. Azolylthioacetamide: A Highly Promising Scaffold for the Development of Metallo-beta-lactamase Inhibitors. ACS Med. Chem. Lett. 2015, 6, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Li, G.B.; Abboud, M.I.; Brem, J.; Someya, H.; Lohans, C.T.; Yang, S.Y.; Spencer, J.; Wareham, D.W.; McDonough, M.A.; Schofield, C.J. NMR-filtered virtual screening leads to non-metal chelating metallo-beta-lactamase inhibitors. Chem. Sci. 2017, 8, 928–937. [Google Scholar] [CrossRef] [Green Version]
- Li, G.B.; Brem, J.; Lesniak, R.; Abboud, M.I.; Lohans, C.T.; Clifton, I.J.; Yang, S.Y.; Jimenez-Castellanos, J.C.; Avison, M.B.; Spencer, J.; et al. Crystallographic analyses of isoquinoline complexes reveal a new mode of metallo-beta-lactamase inhibition. Chem. Commun. 2017, 53, 5806–5809. [Google Scholar] [CrossRef] [Green Version]
- Hiraiwa, Y.; Saito, J.; Watanabe, T.; Yamada, M.; Morinaka, A.; Fukushima, T.; Kudo, T. X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3-aminophthalic acid derivative, structure-based drug design, and synthesis of 3,6-disubstituted phthalic acid derivative inhibitors. Bioorganic Med. Chem. Lett. 2014, 24, 4891–4894. [Google Scholar] [CrossRef]
- Brem, J.; Cain, R.; Cahill, S.; McDonough, M.A.; Clifton, I.J.; Jiménez-Castellanos, J.-C.; Avison, M.B.; Spencer, J.; Fishwick, C.W.G.; Schofield, C.J. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun. 2016, 7, 12406. [Google Scholar] [CrossRef] [Green Version]
- Cahill, S.T.; Cain, R.; Wang, D.Y.; Lohans, C.T.; Wareham, D.W.; Oswin, H.P.; Mohammed, J.; Spencer, J.; Fishwick, C.W.G.; McDonough, M.A.; et al. Cyclic Boronates Inhibit All Classes of β-Lactamases. Antimicrob. Agents Chemother. 2017, 61, e02260-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopeit, T.; Carlsen, T.J.O.; Helland, R.; Leiros, H.-K.S. Discovery of Novel Inhibitor Scaffolds against the Metallo-β-lactamase VIM-2 by Surface Plasmon Resonance (SPR) Based Fragment Screening. J. Med. Chem. 2015, 58, 8671–8682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.J.; Liu, S.; Zhou, S.; Li, H.; Yang, F.; Yang, L.L.; Wu, Y.; Guo, L.; Li, G.B. Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-beta-lactamases. Bioorganic Med. Chem. Lett. 2018, 28, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.J.; Hueso-Rodriguez, J.A.; Boyd, H.; Concha, N.O.; Janson, C.A.; Gilpin, M.; Bateson, J.H.; Cheever, C.; Niconovich, N.L.; Pearson, S.; et al. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrob. Agents Chemother. 2002, 46, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shi, H.; Shi, H. Novel Synthesis of Condensed Heterocyclic Systems Containing 1,2,4-Triazole Ring. Synth. Commun. 2006, 31, 2841–2848. [Google Scholar] [CrossRef]
- Hussein, W.M.; Vella, P.; Islam, N.U.; Ollis, D.L.; Schenk, G.; McGeary, R.P. 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorganic Med. Chem. Lett. 2012, 22, 380–386. [Google Scholar]
- Li, G.; Su, Y.; Yan, Y.H.; Peng, J.Y.; Dai, Q.Q.; Ning, X.L.; Zhu, C.L.; Fu, C.; McDonough, M.A.; Schofield, C.J.; et al. MeLAD: An integrated resource for metalloenzyme-ligand associations. Bioinformatics 2019. [Google Scholar] [CrossRef]
- Celenza, G.; Vicario, M.; Bellio, P.; Linciano, P.; Perilli, M.; Oliver, A.; Blazquez, J.; Cendron, L.; Tondi, D. Phenylboronic Acid Derivatives as Validated Leads Active in Clinical Strains Overexpressing KPC-2: A Step against Bacterial Resistance. ChemMedChem 2018, 13, 713–724. [Google Scholar] [CrossRef]
Sample Availability: Samples of all the compounds are available from the authors. |
Cpds. | Inhibition % (@ 100 μM/10 μM) a | ||||
---|---|---|---|---|---|
VIM-2 | NDM-1 | IMP-1 | VIM-1 | VIM-5 | |
5a | 49 ± 4/17 ± 2 | 29 ± 1/3 ± 1 | – | 29 ± 2/– | 1 ± 1/– |
5b | 45 ± 5/34 ± 3 | 32 ± 4/27 ± 2 | 25 ± 1/21 ± 2 | 21 ± 3/– | 12 ± 2/– |
5c | 43 ± 5/26 ± 4 | 8 ± 1/17 ± 2 | 15 ± 1/16 ± 1 | 19 ± 2/– | 13 ± 2/– |
5d | 39 ± 3/16 ± 1 | 15 ± 1/6 ± 1 | – | 27 ± 2/– | 7 ± 1/– |
5e | 34 ± 3/15 ± 1 | 10 ± 2/20 ± 2 | 8 ± 1/4 ± 2 | 22 ± 3/– | 6 ± 1/– |
5f | 42 ± 2/16 ± 3 | 17 ± 1/22 ± 1 | – | 32 ± 1/– | −9 ± 2/– |
5g | 47 ± 6/35 ± 3 | 26 ± 2/24 ± 2 | 32 ± 1/16 ± 2 | 24 ± 2/– | 11 ± 1/– |
5h | 33 ± 2/7 ± 1 | 9 ± 1/10 ± 1 | – | 27 ± 3/– | −5 ± 2/– |
5i | 52 ± 4/35 ± 2 | 26 ± 1/9 ± 2 | 12 ± 1/11 ± 1 | 29 ± 3/– | 21 ± 2/– |
5j | 34 ± 3/32 ± 2 | 23 ± 2/23 ± 2 | 8 ± 1/13 ± 2 | 27 ± 1/– | 14 ± 1/– |
5k | 84 ± 6/58 ± 3 | 14 ± 1/17 ± 2 | 7 ± 1/5 ± 1 | 28 ± 2/– | 12 ± 1/– |
5l | 86 ± 5/53 ± 4 | 8 ± 1/10 ± 1 | – | 23 ± 1/– | 33 ± 2/– |
5m | 78 ± 5/44 ± 3 | 1 ± 1/4 ± 1 | – | 34 ± 1/– | 2 ± 1/– |
5n | 82 ± 4/43 ± 2 | 8 ± 1/3 ± 2 | – | 61 ± 3/– | −10 ± 2/– |
5o | 23 ± 4/22 ± 1 | 11 ± 1/9 ± 1 | 63 ± 1/15 ± 1 | 27 ± 2/– | 15 ± 1/– |
5p | 71 ± 6/42 ± 5 | 16 ± 2/22 ± 2 | 10 ± 1/-5 ± 1 | 19 ± 2/– | 15 ± 1/– |
5q | 45 ± 1/26 ± 3 | 11 ± 1/20 ± 2 | 9 ± 1/3 ± 1 | 19 ± 1/– | 14 ± 1/– |
5r | 21 ± 3/6 ± 1 | 4 ± 1/9 ± 1 | – | 25 ± 2/– | 8 ± 1/– |
5s | 80 ± 3/50 ± 2 | 28 ± 3/29 ± 3 | 4 ± 1/9 ± 2 | 29 ± 2/– | 14 ± 2/– |
5t | 75 ± 4/40 ± 3 | 23 ± 2/13 ± 1 | – | 14 ± 2/– | 31 ± 2/– |
6 | 57 ± 5/35 ± 2 | 26 ± 2/21 ± 2 | 30 ± 3/5 ± 1 | 25 ± 3/– | 10 ± 2/– |
10a | 32 ± 4/22 ± 3 | 15 ± 1/16 ± 1 | 5 ± 1/6 ± 1 | 24 ± 3/– | 11 ± 1/– |
10b | 30 ± 3/16 ± 2 | 12 ± 2/8 ± 1 | 57 ± 6/27 ± 3 | 30 ± 2/32 ± 2 | 18 ± 2/21 ± 2 |
14 | 26 ± 2/21 ± 2 | 7 ± 1/10 ± 1 | 15 ± 2/18 ± 1 | 22 ± 3/– | 11 ± 1/– |
15 | 21 ± 2/18 ± 3 | 8 ± 1/10 ± 1 | 13 ± 1/19 ± 1 | 25 ± 2/– | 10 ± 2/– |
SBLs | Inhibition % a | |
---|---|---|
100 μM | 10 μM | |
KPC-2 | 8 ± 2 | 2 ± 1 |
TEM-1 | 20 ± 3 | 9 ± 1 |
AmpC | 51 ± 5 | 13 ± 2 |
OXA-48 | 17 ± 2 | 7 ± 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Yan, J.; Song, C.; Yang, F.; Li, C.; Wang, C.; Su, H.; Chen, W.; Wang, L.; Wang, Z.; et al. Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors. Molecules 2020, 25, 56. https://doi.org/10.3390/molecules25010056
Yuan C, Yan J, Song C, Yang F, Li C, Wang C, Su H, Chen W, Wang L, Wang Z, et al. Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors. Molecules. 2020; 25(1):56. https://doi.org/10.3390/molecules25010056
Chicago/Turabian StyleYuan, Chen, Jie Yan, Chen Song, Fan Yang, Chao Li, Cheng Wang, Huiling Su, Wei Chen, Lijiao Wang, Zhouyu Wang, and et al. 2020. "Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors" Molecules 25, no. 1: 56. https://doi.org/10.3390/molecules25010056
APA StyleYuan, C., Yan, J., Song, C., Yang, F., Li, C., Wang, C., Su, H., Chen, W., Wang, L., Wang, Z., Qian, S., & Yang, L. (2020). Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors. Molecules, 25(1), 56. https://doi.org/10.3390/molecules25010056