The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experiment 1: Addition of Mulberry Leaves and Fruits to Liquefied Honey
2.2. Experiment 2: Addition of Mulberry Leaves and Fruits During Creaming Honey
3. Materials and Methods
3.1. Chemicals
3.2. Plants and Honey
3.3. Plant Extract Preparation for Spectrophotometric Assays
3.4. Honey Samples Preparation
3.4.1. Experiment 1: Addition of Mulberry Leaves and Fruits to Liquefied Honey
3.4.2. Experiment 2: Addition of Mulberry Leaves and Fruits during Creaming Honey
3.5. Total Phenolics Content Determination
3.6. Total Anthocyanins Content Determination
- A—calculated absorbance
- MW—molecular weight (449.2 g/mol for cyanidin 3-glucoside)
- DF—dilution factor (20)
- ε—molar absorptivity of cyanidin 3-glucoside (26900 dm3/mol × cm)
3.7. Polyphenolic Profile UPLC Analysis
3.7.1. Sample Preparation
3.7.2. UPLC Separation
3.7.3. Method Validation
3.8. Antioxidant Assays
3.8.1. DPPH Test
3.8.2. FRAP Assay
3.9. Enzymatic Activity Assays
3.10. Diastase Number Determination
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; de Cássia Avellaneda Guimarães, R.; de Cássia Freitas , K. Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asia. Pac. J. Tropical Biomed. 2017, 7, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.W.-C.; Lye, P.-Y.; Wong, S.-K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Na. Medicines 2016, 14, 17–30. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.; Luo, X.; Li, X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucelova, L.; Grygorieva, O.; Ivanišová, E.; Margarita, T.; Brindza, J. Biological properties of black mulberry-derived food products (Morus nigra L.). J. Berry Res. 2016, 6, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Younus Wani, M.; Mir, M.; Younus Wani, C.M.; Baqual, M.; Mehraj, K.; Bhat, T.; Rani, S. Role of foliar sprays in sericulture industry. J. Pharmacognosy Phytochem. 2017, 6, 1803–1806. [Google Scholar]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Jiang, L.; Zhang, J.G.; Deng, W.; Wang, H.L.; Wei, Z.J. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Ind. Crop. Prod. 2013, 49, 782–784. [Google Scholar] [CrossRef]
- Meo, S.A.; Ansari, M.J.; Sattar, K.; Chaudhary, H.U.; Hajjar, W.; Alasiri, S. Honey and diabetes mellitus: Obstacles and challenges—Road to be repaired. Saudi J. Biol. Sci. 2017, 24, 1030–1033. [Google Scholar] [CrossRef]
- Abdulrhman, M.A. Honey as a Sole Treatment of Type 2 Diabetes Mellitus. Endocrinol. Metab. Syndr. 2016, 5, 1000232. [Google Scholar] [CrossRef]
- Enginyurt, O.; Cakir, L.; Karatas, A.; Cankaya, S.; Kaya, Y.; Tugcu, H.H.; Iscanli, M.C.; Cankaya, N.; Yarilgac, S. The role of pure honey in the treatment of diabetes mellitus. Biomed. Res. 2017, 28, 3305–3312. [Google Scholar]
- Bobiş, O.; Dezmirean, D.S.; Moise, A.R. Honey and Diabetes: The Importance of Natural Simple Sugars in Diet for Preventing and Treating Different Type of Diabetes. Oxid. Med. Cell Longev. 2018, 4757893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dżugan, M.; Sowa, P.; Kwaśniewska, M.; Wesołowska, M.; Czernicka, M. Physicochemical Parameters and Antioxidant Activity of Bee Honey Enriched With Herbs. Plant Food. Hum. Nutr. 2017, 72, 74–81. [Google Scholar] [CrossRef]
- Gungor, N.; Sengul, M. Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus alba L.) fruits. Int. J. Food Prop. 2008, 11, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, M.P.; Petkova, N.T.; Denev, P.P.; Aleksieva, I.N. Carbohydrate composition and antioxidant activity of certain Morus species. Int. J. Pharmacognosy Phytochem. Res. 2015, 7, 621–627. [Google Scholar]
- Khyade, V.B. Antioxidant activity and phenolic compounds of mulberry, Morus alba (L) (Variety: Baramatiwali). J. Med. Plant. Stud. 2016, 4, 4–7. [Google Scholar]
- Kim, D.-S.; Kang, Y.M.; Jin, W.Y.; Sung, Y.-Y.; Choi, G.; Kim, H.K. Antioxidant activities and polyphenol content of Morus alba leaf extracts collected from varying regions. Biomed. Rep. 2014, 2, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiang, L.; Wang, C.; Tang, C.; He, X. Antidiabetic and Antioxidant Effects and Phytochemicals of Mulberry Fruit (Morus alba L.) Polyphenol Enhanced Extract. PLoS ONE 2013, 8, e71144. [Google Scholar] [CrossRef]
- Natić, M.M.; Dabić, D.; Papetti, A.; Fotirić Akšić, M.M.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž.L. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Ju, W.T.; Kwon, O.C.; Kim, H.B.; Sung, G.B.; Kim, H.W.; Kim, Y.S. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Li, Y.; Niu, W.; Ding, Y.; Zhang, R.; Shang, X. Analysis and characterisation of anthocyanins in mulberry fruit. Czech J. Food Sci. 2010, 28, 117–126. [Google Scholar] [CrossRef]
- Szczesna, T.; Rybak-Chmielewska, H.; Waś, E.; Kachaniuk, K.; Teper, D. Characteristics of Polish unifloral honeys. I. Rape honey (Brassica napus L. Var. oleifera Metzger). J. Apic. Sci. 2011, 55, 111–119. [Google Scholar]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 69. [Google Scholar] [CrossRef] [Green Version]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Tech. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic content and antioxidant activity of different types of polish honey—A short report. Polish J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Wesołowska, M.; Dżugan, M. Aktywność i stabilność termiczna diastazy występującej w Podkarpackich miodach odmianowych. Zywność. Nauka. Technologia. Jakość/Food. Science Technology. Quality 2017, 24, 103–112. [Google Scholar] [CrossRef]
- Habeeb, M.N.; Naik, P.R.; Moqbel, F.S. Inhibition of α-glucosidase and α-amylase by Morus alba Linn leaf extracts. J. Pharm. Res. 2012, 5, 285–289. [Google Scholar]
- Nickavar, B.; Mosazadeh, G. Influence of three Morus species extracts on α-amylase activity. Iran. J. Pharm. Res. 2009, 8, 115–119. [Google Scholar]
- Yogisha, S.; Raveesha, K.A. Alpha Glucosidase inhibitory activity of Morus Alba. PharmacologyOnLine 2009, 1, 404–409. [Google Scholar]
- Yazdankhah, S.; Hojjati, M.; Azizi, M.H. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Plant. Food. Hum. Nutr. 2019, 74, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Afroz, R.; Tanvir, E.M.; Zheng, W.; Little, P.J. Molecular Pharmacology of Honey. Clin. Exp. Pharmacol. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Trautvetter, S.; Koelling-Speer, I.; Speer, K. Confirmation of phenolic acids and flavonoids in honeys by UPLC-MS. Apidologie 2009, 40, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Jibril, F.I.; Hilmi, A.B.M.; Manivannan, L. Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bull. Natl. Res. Cent. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- Moloudian, H.; Abbasian, S.; Nassiri-Koopaei, N.; Tahmasbi, M.R.; Afzal, G.A.; Ahosseini, M.S.; Yunesian, M.; Khoshayand, M.R. Characterization and classification of Iranian honey based on physicochemical properties and antioxidant activities, with chemometrics approach. Iran. J. Pharm. Res. 2018, 17, 708–725. [Google Scholar]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech. J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Al-Sherif, A.A.; Mazeed, A.M.; Ewis, M.A.; Nafea, E.A.; Hagag, E.S.E.; Kamel, A.A. Activity of salivary glands in secreting honey-elaborating enzymes in two subspecies of honeybee (Apis mellifera L). Physiol. Entomol. 2017, 42, 397–403. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-Visible spectrophotomery. Current Protocols Food Anal. Chem. 2001, F1.2.1. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Dżugan, M.; Wesołowska, M.; Puchalski, C.; Zaguła, G.; Czernicka, M.; Kisała, J.; Kaczmarski, M. Rola interakcji międzypierwiastkowych w ograniczeniu biodostępności metali ciężkich w łańcuchu pokarmowym człowieka (The role of interactions between elements in limiting the bioavailability of heavy metals in the human food chain); Wydawnictwo Uniwersytetu Rzeszowskiego: Poland, Rzeszów, 2015; pp. 1–123. [Google Scholar]
Sample Availability: The honey samples are available from the authors for limited time. |
Sample | TPC (mg GAE/100 g) | DPPH (% of Inhibition) | FRAP (mmol TE/100 g) | TAC (mg/100 g as cyanidin 3-glucoside) | |
---|---|---|---|---|---|
M. alba ‘Bistro’ | leaves | 572.8 ± 40.9 A | 22.2 ± 1.1 A | 1.58 ± 0.07 A | - |
fruits (white) | 426.7 ± 25.2 a | 16.3 ± 2.2 a | 1.28 ± 0.05 a | 76.3 ± 8.6 a | |
M. alba ‘Żółwińska wielkolistna’ | leaves | 680.6 ± 58.9 AB | 18.7 ± 1.0 A | 1.97 ± 0.08 B | - |
fruits (black) | 1041.1 ± 56.7 bc | 78.9 ± 1.5 b | 5.43 ± 0.12 b | 618.2 ± 130.8 b | |
M. alba ‘Ukraińska’ | leaves | 761.4 ± 56.2 B | 63.5 ± 2.9 B | 3.02 ± 0.22 C | - |
fruits (slightly pink) | 302.5 ± 10.8 a | 5.3 ± 2.8 c | 0.86 ± 0.02 c | 61.8 ± 13.1 a | |
M. bombycis ‘Kenmochi’ | leaves | 665.5 ± 63.3 C | 54.6 ± 2.8 C | 2.15 ± 0.08 B | - |
fruits (black) | 1114.8 ± 86.6 AB | 77.9 ± 1.6 b | 5.20 ± 0.06 d | 763.5 ± 86.0 b |
TPC | DPPH | FRAP | |||||
---|---|---|---|---|---|---|---|
Fruits | Leaves | Fruits | Leaves | Fruits | Leaves | ||
TPC | Fruits | 1.000 | |||||
Leaves | −0.162 | 1.000 | |||||
DPPH | Fruits | 0.997 * | −0.147 | 1.000 | |||
Leaves | −0.201 | 0.689 * | −0.250 | 1.000 | |||
FRAP | Fruits | 0.992 * | −0.100 | 0.999 * | −0.236 | 1.000 | |
Leaves | −0.337 | 0.959 * | −0.340 | 0.832 * | −0.301 | 1.000 | |
TAC | Fruits | 0.990 * | - | 0.980 * | - | 0.978 * | - |
Leaves | - | - | - | - | - | - |
Compound | Rt | λmax | [M − H]− m/z | M. alba ‘Bistro’ | M. alba ’Żółwińska wielkolistna’ | M. alba ‘Ukraińska’ | M. bombycis ‘Kenmochi’ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min. | nm | MS | MS/MS | Leaves | Fruits (White) | Leaves | Fruits (Black) | Leaves | Fruits (Pink) | Leaves | Fruits (Black) | ||
1 | Neochlorogenic acid | 2.51 | 299sh, 327 | 353 | 191, 179 | 260.6 | 18.0 | 113.4 | 18.0 | 93.9 | 22.1 | 174.3 | 57.2 |
2 | Cyanidin 3-O-glucoside | 2.98 | 279, 515 | 449* | 287 | ND | Tr | ND | 119.6 | ND | ND | ND | 239.2 |
3 | Cyanidin 3-O-rutinoside | 3.08 | 279, 515 | 595* | 287 | ND | ND | ND | 123.2 | ND | ND | ND | 246.4 |
4 | Chlorogenic acid | 3.12 | 299sh, 325 | 353 | 191, 179 | 4317.0 | 18.1 | 1549.2 | 104.5 | 1498.9 | 25.6 | 2182.1 | 315.4 |
5 | Cryptochlorogenic acid | 3.25 | 299sh, 327 | 353 | 191, 179 | 1217.7 | 19.6 | 437.1 | 77.9 | 340.5 | 21.4 | 787.6 | 238.4 |
6 | Quercetin 3-O-[(6”-O-malonyl)-glucosyl]-glucoside | 3.36 | 255, 345 | 711 | 625, 301 | 47.7 | 12.9 | 8.0 | 47.3 | 49.6 | 13.8 | 30.2 | 68.6 |
7 | Kaempferol 3-O-rutinoside-7-O-glucoside | 3.47 | 264, 345 | 755 | 593, 285 | 21.2 | 18.7 | 14.6 | Tr | 10.0 | 18.9 | 0.7 | Tr |
8 | Caffeoylquinic acid | 3.72 | 299sh, 327 | 355 | 191 | 108.6 | 17.6 | 24.0 | Tr | 54.5 | 17.0 | 71.5 | Tr |
9 | Kaempferol 3-O-glucosyl-glucoside-7-O-glucoside | 3.80 | 266, 312 | 755 | 609, 285 | 42.2 | 17.1 | 16.8 | Tr | 02.8 | 17.8 | 40.1 | Tr |
10 | Quercetin 3-O-glucosyl-glucoside | 4.05 | 254, 347 | 625 | 301 | 76.7 | 9.1 | 44.5 | Tr | ND | 8.0 | 44.1 | 0.8 |
11 | Quercetin 3-O-rutinoside-7-O-rhamnoside | 4.14 | 255, 350 | 755 | 609, 301 | 12.8 | 7.6 | 22.6 | Tr | 42.9 | 7.6 | 96.2 | Tr |
12 | Quercetin 3-O-rhamnosyl-glucoside | 4.45 | 254, 347 | 609 | 301 | 06.8 | 7.6 | 22.4 | Tr | 06.8 | 7.6 | 58.0 | Tr |
13 | Kaempferol 3-O-rutinoside-7-O-rhamnoside | 4.52 | 264, 338 | 739 | 593, 285 | 3.3 | 17.3 | Tr | Tr | Tr | 17.1 | 14.2 | Tr |
14 | Quercetin 3-O-rutinoside | 4.67 | 255, 354 | 609 | 301 | 908.9 | 10.6 | 329.3 | 70.7 | 450.3 | 12.1 | 557.5 | 188.9 |
15 | Quercetin 3-O-[(6”-O-malonyl)-glucosyl]-rhamnoside | 4.82 | 255, 352 | 695 | 609, 301 | 58.0 | 10.0 | 19.6 | ND | 46.2 | 08.8 | 208.3 | ND |
16 | Quercetin 3-O-glucoside | 4.89 | 255, 355 | 463 | 301 | 200.6 | 14.5 | 90.7 | 7.0 | 200.2 | 13.2 | 363.9 | 48.6 |
17 | Quercetin 3-O-(6”-acetyl)-glucoside | 5.15 | 255, 354 | 505 | 463, 301 | 726.9 | 12.8 | 180.4 | Tr | 469.6 | 09.9 | 1062.6 | 13.6 |
18 | Kaempferol 3-O-rutinoside | 5.19 | 264, 347 | 593 | 285 | 79.9 | 17.9 | 31.4 | Tr | 43.0 | 17.6 | 102.2 | Tr |
19 | Kaempferol 3-O-[(6”-malonyl)-glucosyl]-rhamnoside | 5.28 | 264, 347 | 679 | 593, 285 | 3.4 | 17.1 | Tr | Tr | Tr | 17.1 | 56.8 | Tr |
20 | Quercetin 3-O-rhamnoside | 5.39 | 255, 354 | 447 | 301 | 174.9 | 10.1 | 31.7 | Tr | 130.5 | 09.0 | 234.0 | Tr |
21 | Quercetin 3-O-(6”-malonyl)-glucoside | 5.79 | 264, 347 | 533 | 447, 285 | 152.7 | 19.5 | 35.5 | Tr | 125.7 | 17.8 | 452.1 | Tr |
22 | Ferulic acid | 6.27 | 299sh, 327 | 193 | 179, 134 | Tr | 15.6 | Tr | 0.03 | Tr | 17.6 | Tr | Tr |
23 | Quercetin | 6.99 | 255, 355 | 301 | - | 6.4 | 7.6 | 21.9 | Tr | Tr | 07.6 | Tr | Tr |
Total | 8426.4 | 299.1 | 2993.2 | 56.84 | 3565.1 | 307.5 | 6536.3 | 1417.1 |
Sample | TPC (mg GAE/100 g) | DPPH (% of Inhibition) | FRAP (mmol TE/g) |
---|---|---|---|
Honey (Control) | 25.2 ± 1.2 a | 2.9 ± 0.1 a | 0.035 ± 0.002 a |
Honey + M. alba ‘Ukraińska’ fruits | 38.0 ± 1.1 b | 23.6 ± 2.7 b | 0.080 ± 0.006 b |
Honey + M. alba ‘Ukraińska’ leaves | 51.8 ± 1.5 c | 32.1 ± 1.1 c | 0.217 ± 0.003 c |
Honey + M. bombycis ‘Kenmochi’ fruits | 59.7 ± 2.0 d | 27.2 ± 1.9 b | 0.269 ± 0.011 d |
Honey + M. bombycis ‘Kenmochi’ leaves | 50.8 ± 5.5 c | 22.9 ± 1.9 b | 0.186 ± 0.003 e |
Sample | TPC (mg GAE/kg) | DPPH (% of inhibition) | FRAP (μmol TE/g) | α-GLU Activity (U/kg) | β-GAL Activity (U/kg) | Diastase Number |
---|---|---|---|---|---|---|
Control | 214.1 ± 15.4 a | 3.0 ± 0.4 a | 64.2 ± 4.4 a | 5.7 ± 0.0 a | 17.0 ± 1.8 a | 12.0 ± 2.5 a |
Leaves 1% | 314.7 ± 10.7 b | 11.2 ± 1.5 b | 118.3 ± 6.8 b | 6.0 ± 0.2 a | 17.0 ± 1.7 a | 9.7 ± 1.3 ab |
Leaves 2% | 526.4 ± 35.2 c | 27.8 ± 2.6 c | 226.0 ± 9.1 c | 7.2 ± 0.2 b | 23.4 ± 0.3 b | 9.3 ± 1.0 ab |
Leaves 4% | 786.8 ± 1.0 d | 55.0 ± 2.3 d | 369.7 ± 6.0 d | 9.5 ± 0.8 c | 26.1 ± 0.3 bcd | 7.5 ± 0.8 b |
Fruits 1% | 294.9 ± 7.3 be | 3.7 ± 1.2 a | 71.5 ± 2.7 ae | 4.3 ± 0.5 d | 29.4 ± 2.3 cd | 9.9 ± 0.9 ab |
Fruits 2% | 342.3 ± 11.3 bf | 9.1 ± 1.0 be | 85.5 ± 2.4 e | 4.4 ± 0.2 de | 27.6 ± 0.2 d | 8.7 ± 0.6 ab |
Fruits 4% | 385.0 ± 7.3 g | 13.5 ± 0.8 bf | 107.4 ± 3.4 b | 4.9 ± 0.4 adf | 26.6 ± 0.7 d | 6.8 ± 0.5 b |
Compound | Rt | [M − H]− m/z | Rape Honey (mg/kg) | |||
---|---|---|---|---|---|---|
min. | MS | MS/MS | ||||
1 | Gallic acid | 1.04 | 169 | 125 | 0.045 | |
2 | Caffeic acid | 3.99 | 179 | 135 | 0.068 | |
3 | coumaric acid | 4.28 | 163 | 119 | 0.032 | |
4 | 3-hydroxy benzoic acid | 4.3 | 137 | 93 | 0.180 | |
5 | 4-hydroxy benzoic acid | 4.67 | 137 | 93 | 0.008 | |
6 | Syringic acid | 4.87 | 197 | 140 | 0.104 | |
7 | Sinapic acid | 4.89 | 223 | 175 | 0.074 | |
8 | Quercetin | 7 | 301 | 0.013 | ||
9 | Kaempferol | 8.16 | 285 | 0.168 | ||
10 | Pinobanksin | 8.24 | 271 | 0.002 | ||
Total | 0.694 | |||||
Enriched honey | + 1% (w/w) Fruits (mg/kg) | + 1% (w/w) Leaves (mg/kg) | ||||
1 | Neochlorogenic acid | 2.51 | 353 | 191, 179 | 0.048 | Tr |
4 | Chlorogenic acid | 3.12 | 353 | 191, 179 | 1.503 | 16.341 |
5 | Cryptochlorogenic acid | 3.25 | 353 | 191, 179 | 0.832 | 2.371 |
6 | Quercetin 3-O-[(6”-O-malonyl)-glucosyl]-glucoside | 3.36 | 711 | 625, 301 | 0.020 | 0.944 |
7 | Kaempferol 3-O-rutinoside-7-O-glucoside | 3.47 | 755 | 593, 285 | 0.006 | 0.650 |
8 | Caffeoylquinic acid | 3.72 | 355 | 191 | 0.086 | 1.209 |
9 | Kaempferol 3-O-glucosyl-glucoside-7-O-glucoside | 3.80 | 755 | 609, 285 | Tr | 0.256 |
10 | Quercetin 3-O-glucosyl-glucoside | 4.05 | 625 | 301 | 0.239 | 0.234 |
11 | Quercetin 3-O-rutinoside-7-O-rhamnoside | 4.14 | 755 | 609, 301 | 0.071 | 1.173 |
12 | Quercetin 3-O-rhamnosyl-glucoside | 4.45 | 609 | 301 | 0.138 | 1.033 |
13 | Kaempferol 3-O-rutinoside-7-O-rhamnoside | 4.52 | 739 | 593, 285 | 0.310 | 0.456 |
14 | Quercetin 3-O-rutinoside | 4.67 | 609 | 301 | 0.981 | 6.972 |
15 | Quercetin 3-O-[(6”-O-malonyl)-glucosyl]-rhamnoside | 4.82 | 695 | 609, 301 | 0.229 | 0.967 |
16 | Quercetin 3-O-glucoside | 4.89 | 463 | 301 | 0.282 | 8.556 |
17 | Quercetin 3-O-(6”-acetyl)-glucoside | 5.15 | 505 | 463, 301 | 0.024 | 6.667 |
18 | Kaempferol 3-O-rutinoside | 5.19 | 593 | 285 | 0.089 | 1.673 |
19 | Kaempferol 3-O-[(6”-malonyl)-glucosyl]-rhamnoside | 5.28 | 679 | 593, 285 | 0.077 | 0.187 |
20 | Quercetin 3-O-rhamnoside | 5.39 | 447 | 301 | 0.026 | 1.784 |
21 | Quercetin 3-O-(6”-malonyl)-glucoside | 5.79 | 533 | 447, 285 | 0.030 | 1.580 |
22 | Ferulic acid | 6.27 | 193 | 179, 134 | Tr | Tr |
23 | Quercetin | 6.99 | 301 | - | 0.033 | 0.030 |
Total | 5.024 | 53.084 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2020, 25, 84. https://doi.org/10.3390/molecules25010084
Tomczyk M, Miłek M, Sidor E, Kapusta I, Litwińczuk W, Puchalski C, Dżugan M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules. 2020; 25(1):84. https://doi.org/10.3390/molecules25010084
Chicago/Turabian StyleTomczyk, Monika, Michał Miłek, Ewelina Sidor, Ireneusz Kapusta, Wojciech Litwińczuk, Czesław Puchalski, and Małgorzata Dżugan. 2020. "The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity" Molecules 25, no. 1: 84. https://doi.org/10.3390/molecules25010084
APA StyleTomczyk, M., Miłek, M., Sidor, E., Kapusta, I., Litwińczuk, W., Puchalski, C., & Dżugan, M. (2020). The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules, 25(1), 84. https://doi.org/10.3390/molecules25010084