Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Preparation of Starting Compounds
2.3. General Procedure for Sulfonamide Synthesis
2.4. Cell Lines and Culture Cconditions
2.5. Cell Viability Assay (Adherent Cell Lines)
2.6. Cell Viability Assay (Suspension Cell Line)
2.7. Determination of Lactate Dehydrogenase (LDH)
3. Results and Discussion
3.1. Preparation of Compounds
3.2. Primary Evaluation of the Anticancer Activity of Sulfonamide Compounds
3.3. Sulfonamides and HCC Cell Lines
3.4. Sulfonamides and MB Cell Lines
3.5. Sulfonamides and GBM Cell Line
3.6. SAR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Supuran, C.T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev. 2003, 23, 535–558. [Google Scholar] [CrossRef] [PubMed]
- Ghorab, M.M.; Alsaid, M.S.; Al-Dosari, M.S.; El-Gazzar, M.G.; Arbab, A.H. In-Vitro Anticancer Evaluation of Some Novel Thioureido-Benzensulfonamide Derivatives. Molecules 2016, 21, 409. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M.-F. Anticancer metallodrugs of glutamic acid sulphonamides: In silico, DNA binding, hemolysis and anticancer studies. RSC Adv. 2014, 4, 29629–29641. [Google Scholar] [CrossRef]
- Kwon, Y.; Song, J.; Lee, H.; Kim, E.Y.; Lee, K.; Lee, S.K.; Kim, S. Design, Synthesis, and Biological Activity of Sulfonamide Analogues of Antofine and Cryptopleurine as Potent and Orally Active Antitumor Agents. J. Med. Chem. 2015, 58, 7749–7762. [Google Scholar] [CrossRef] [Green Version]
- Custodio, J.M.F.; Michelini, L.J.; de Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.V.L.; Barreto, F.S.; Filho, M.O.M.; Perez, C.N.; Napolitano, H.B. Structural insights into a novel anticancer sulfonamide chalcone. New J. Chem. 2018, 42, 3426–3434. [Google Scholar] [CrossRef]
- Majellaro, M.; Stefanachi, A.; Tardia, P.; Vicenti, C.; Boccarelli, A.; Pannunzio, A.; Campanella, F.; Coluccia, M.; Denora, N.; Leonetti, F.; et al. Investigating Structural Requirements for the Antiproliferative Activity of Biphenyl Nicotinamides. ChemMedChem 2017, 12, 1380–1389. [Google Scholar] [CrossRef] [Green Version]
- Meti, G.Y.; Kamble, R.R.; Kamble, A.A.; Kumbar, M.N.; Joshi, S.D.; Dixit, S.R. Synthesis and Anti-Proliferative Activity of Biphenyl Derved 5-Substituted-Indolin-2-Ones. Arch. Chem. Res. 2016, 1, 1. [Google Scholar]
- Zhao, J.; Zhao, H.; Hall, J.A.; Brown, D.; Brandes, E.; Bazzill, J.; Grogan, P.T.; Subramanian, C.; Vielhauer, G.; Cohen, M.S.; et al. Triazole containing novobiocin and biphenyl amides as Hsp90 C-terminal inhibitors. Med. Chem. Commun. 2014, 5, 1317–1323. [Google Scholar] [CrossRef]
- Beltageri, R.; Zhang, Y.; Zindell, R.M.; Kuzmich, D.; Kirrane, T.M.; Bentzien, J.; Cardozo, M.; Capolino, A.J.; Fadra, T.N.; Nelson, R.M.; et al. Trifluoromethyl group as a pharmacophore: Effect of replacing a CF3 group on binding and agonist activity of a glucocorticoid receptor ligand. Bioorg. Med. Chem. Lett. 2005, 15, 4761–4769. [Google Scholar] [CrossRef]
- Kumar, B.N.P.; Mohana, K.N.; Mallesha, L.; Veeresh, B. Synthesis and in vitro antiproliferative activity of 2,5-disubstituted-1,3,4-oxadiazoles containing trifluoromethyl benzenesulfonamide moiety. Med. Chem. Res. 2014, 23, 3363–3373. [Google Scholar] [CrossRef]
- Wojaczyńska, E.; Wojaczyński, J.; Kleniewska, K.; Dorsz, M.; Olszewski, T.K. 2-Azanorbornane—A versatile chiral aza-Diels–Alder cycloadduct: Preparation, applications in stereoselective synthesis and biological activity. Org. Biomol. Chem. 2015, 13, 6116–6148. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.D.; Wilson, R.D.; Brown, G.R. Stereoselective synthesis of pipecolic acid derivatives using aza-Diels-Alder reactions. Tetrahedron Lett. 1989, 30, 6781–6784. [Google Scholar] [CrossRef]
- Stella, H.; Abraham, H.; Feneau-Dupont, J.; Tinant, B.; Declercq, J.P. Asymmetric aza-Diels-Alder reaction using the chiral 1-phenyl ethyl imine of methyl glyoxylate. Tetrahedron Lett. 1990, 31, 2603–2606. [Google Scholar] [CrossRef]
- Waldmann, H.; Braun, M. Asymmetric synthesis of bicyclic amino acid derivatives by aza-Diels-Alder reactions in aqueous solution. Liebigs Ann. 1991, 1991, 1045–1048. [Google Scholar] [CrossRef]
- Nakano, H.; Kumagai, N.; Kabuto, C.; Matsuzaki, H.; Hongo, H. Synthesis of new chiral catalysts, N-alkyl-2-azanorbornyl-methanols, for the enantioselective addition of diethylzinc to arylaldehydes. Tetrahedron Asymmetry 1995, 6, 1233–1236. [Google Scholar] [CrossRef]
- Ekegren, J.K.; Modin, S.A.; Alonso, D.A.; Andersson, P.G. Multigram scale synthesis of a useful aza-Diels–Alder adduct in a one-step procedure. Tetrahedron Asymmetry 2002, 13, 447–449. [Google Scholar] [CrossRef]
- Hashimoto, N.; Yasuda, H.; Hayashi, M.; Tanabe, Y. Aza-Diels−Alder Reaction of Methyl 2-[(R)-1-Phenylethyl]iminoethanoate with Cyclopentadiene Using Practical and Environmentally Friendly Biphasic Solvent System. Org. Process Res. Dev. 2005, 9, 105–109. [Google Scholar] [CrossRef]
- Brandt, P.; Andersson, P.G. Exploring the Chemistry of 3-Substituted 2-Azanorbornyls in Asymmetric Catalysis. Synlett 2000, 8, 1092–1106. [Google Scholar]
- Wojaczyńska, E.; Turowska-Tyrk, I.; Skarżewski, J. Novel chiral bridged azepanes: Stereoselective ring expansion of 2-azanorbornan-3-yl methanols. Tetrahedron 2012, 68, 7848–7854. [Google Scholar] [CrossRef]
- Wojaczyńska, E.; Skarżewski, J. Chelating 2-azanorbornyl derivatives as effective nitrogen–nitrogen and nitrogen–chalcogen donating ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry 2008, 19, 2252–2257. [Google Scholar] [CrossRef]
- Kamińska, K.; Wojaczyńska, E.; Wietrzyk, J.; Turlej, E.; Błażejczyk, A.; Wieczorek, R. Synthesis, structure and antiproliferative activity of chiral polyamines based on a 2-azanorbornane skeleton. Tetrahedron Asymmetry 2016, 27, 753–758. [Google Scholar] [CrossRef]
- Wojaczyńska, E.; Skarżewski, J.; Sidorowicz, Ł.; Wieczorek, R.; Wojaczyński, J. Zinc complexes formed by 2,2′-bipyridine and 1,10-phenanthroline moieties combined with 2-azanorbornane: Modular chiral catalysts for aldol reactions. New J. Chem. 2016, 40, 9795–9805. [Google Scholar] [CrossRef] [Green Version]
- CrysAlis PRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, UK, 2017.
- Sheldrick, G.M. Crystal structure solution and refinement with SHELXT, SHELXL. Acta Cryst. 2016, C71, 3–8. [Google Scholar]
- Sagmeister, S.; Eisenbauer, M.; Pirker, C.; Mohr, T.; Holzmann, K.; Zwickl, H.; Bichler, C.; Kandioler, D.; Wrba, F.; Mikulits, W.; et al. New cellular tools reveal complex epithelial–mesenchymal interactions in hepatocarcinogenesis. Br. J. Cancer 2008, 99, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohr-Udilova, N.V.; Stolze, K.; Sagmeister, S.; Nohl, H.; Schulte-Hermann, R.; Grasl-Kraupp, B. Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol. Nutr. Food Res. 2008, 52, 352–359. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular Carcinoma: Causes, Mechanism of Progression and Biomarkers. Curr. Chem. Genom. Transl. Med. 2018, 12, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, 359–386. [Google Scholar] [CrossRef]
- Ivanov, D.P.; Coyle, B.; Walker, D.A.; Grabowska, A.M. In vitro models of medulloblastoma: Choosing the right tool for the job. J. Biotechnol. 2016, 236, 10–25. [Google Scholar] [CrossRef]
- Von Bueren, A.O.; Shalaby, T.; Oehler-Jänne, C.; Arnold, L.; Stearns, D.; Eberhart, C.G.; Arcaro, A.; Pruschy, M.; Grotzer, M.A. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells. BMC Cancer 2009, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Helson, L.; Majeed, M. Pleiotropic Chemotherapy to Abrogate Glioblastoma Multiforme Migration/Invasion. Anticancer Res. 2019, 39, 3423–3427. [Google Scholar] [CrossRef]
- Muller, P.Y.; Milton, M.N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Cell Line/LD50 [µM] | |||||||
---|---|---|---|---|---|---|---|
Compound | HCC | MB | GBM U251 | HUVEC | |||
HUH7 | AKH12 | DAOY | UW228-2 | D283 | |||
10a | 13.94 ± 1.02 | 15.5 ± 1.3 | 16 ± 1.12 | 28.8 ± 2.1 | 17.71 ± 1.09 | 13.51 ± 0.9 | 11.58 ± 1.11 |
10b | 21.33 ± 1.23 | 23.72 ± 1.27 | - | - | 31.27 ± 1.32 | 20.44 ± 1.58 | 12.88 ± 2.13 |
10c | 17.33 ±0.98 | 23.27 ± 2.1 | 16 ± 2.1 | 15.74 ± 1.32 | 27.25 ± 2.35 | 21.33 ± 1.01 | 13.8 ± 1.14 |
10e | 16.33 ± 0.69 | 32 ± 2.21 | 15.54 ± 1.62 | 26.66 ± 1.52 | 15.61 ± 0.59 | 16 ± 2 | 9.58 ± 1.88 |
10f | 24.57 ± 1.54 | 24.72 ± 1.98 | 15.77 ± 1.09 | 28 ± 2.09 | 18.78 ± 1.22 | 32.72 ± 1.32 | 17.26 ± 2.33 |
10g | 11.66 ± 1.53 | 10.18 ± 1.09 | 19.2 ± 1.42 | 12 ± 0.99 | 16 ± 1 | 11.76 ± 1.58 | 10.77 ± 0.93 |
11a | 22.5 ± 1.21 | 28.8 ± 1.53 | 18.66 ± 1.88 | 16 ± 1.03 | 20 ± 2.02 | 18.78 ± 2.11 | 13.35 ± 0.25 |
11e | 30.22 ± 2.21 | 28 ± 1.39 | 24 ± 1.49 | 23.46 ± 1.56 | 25.9 ± 1.9 | 23.7 ± 1.69 | 17.58 ± 2.94 |
11f | 42.66 ± 1.98 | - | 17.33 ± 0.99 | 31.36 ± 2.12 | 29.91 ± 1.5 | 31.48 ± 2 | 22.28 ± 1.45 |
11g | 20 ± 1.1 | 28 ± 1.72 | 20.41 ± 1.33 | 20.14 ± 1.34 | 17.23 ± 0.89 | 24.8 ± 0.92 | 18.68 ± 1.97 |
12i | 7.75 ± 0.84 | 5.75 ± 0.47 | 12.88 ± 1.59 | 28.44 ± 2.11 | 21.81 ± 1.9 | 15.33 ± 1.59 | 3.16 ± 0.15 |
13a | 13.92 ± 0.49 | 8 ± 0.28 | 19.2 ± 1.37 | 25.9 ± 1.98 | 38.4 ± 1.11 | 27.63 ± 1.04 | 12.13 ± 0.26 |
Cell line/LD50 [µM] | |||
---|---|---|---|
Compound | MB D425 | HUVEC | HUVEC/D425 LD50 Fold Change |
10a | 16.71 ± 2.11 | 28 ± 1.86 | 1.67 |
10b | 16.38 ± 2.34 | 28.9 ± 2.97 | 1.76 |
10c | 5.38 ± 0.77 | 16.77 ± 0.71 | 3.11 |
10e | 10.95 ± 0.47 | 11.54 ± 2.8 | 1.05 |
10f | 20.24 ± 0.79 | 23.15 ± 2.21 | 1.14 |
10g | 6.61 ± 1.52 | 17.62 ± 2.98 | 2.66 |
11a | 21.42 ± 0.89 | 21.71 ± 1.99 | 1.01 |
11e | 17.78 ± 1.04 | 36.38 ± 4.37 | 2.04 |
11f | 32 ± 1.37 | 31.52 ± 1.16 | 0.98 |
11g | 11.2 ± 1.73 | 16 ± 2.29 | 1.42 |
12i | 15.6 ± 0.93 | 8.91 ± 2.11 | 0.57 |
13a | 30.54 ± 1.86 | 16 ± 0.79 | 0.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadaei, M.; Pinter, M.; Senfter, D.; Madlener, S.; Rohr-Udilova, N.; Iwan, D.; Kamińska, K.; Wojaczyńska, E.; Wojaczyński, J.; Kochel, A. Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton. Molecules 2020, 25, 2355. https://doi.org/10.3390/molecules25102355
Samadaei M, Pinter M, Senfter D, Madlener S, Rohr-Udilova N, Iwan D, Kamińska K, Wojaczyńska E, Wojaczyński J, Kochel A. Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton. Molecules. 2020; 25(10):2355. https://doi.org/10.3390/molecules25102355
Chicago/Turabian StyleSamadaei, Mahzeiar, Matthias Pinter, Daniel Senfter, Sibylle Madlener, Nataliya Rohr-Udilova, Dominika Iwan, Karolina Kamińska, Elżbieta Wojaczyńska, Jacek Wojaczyński, and Andrzej Kochel. 2020. "Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton" Molecules 25, no. 10: 2355. https://doi.org/10.3390/molecules25102355
APA StyleSamadaei, M., Pinter, M., Senfter, D., Madlener, S., Rohr-Udilova, N., Iwan, D., Kamińska, K., Wojaczyńska, E., Wojaczyński, J., & Kochel, A. (2020). Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton. Molecules, 25(10), 2355. https://doi.org/10.3390/molecules25102355