Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Contents (TPCs), Anthocyanins and Anthocyanidins
2.2. Antioxidant Activities
2.3. In Vitro Cholinesterase and BACE-1 Inhibitory Activities
2.4. Correlation Analysis of Bioactive Compounds, Antioxidant Activities and AD Key Enzyme Inhibitory Activities
3. Discussion
4. Materials and Methods
4.1. Mulberry Collection, Preparation, and Extraction
4.2. Evaluation of Antioxidant Activity
4.3. Determination of Total Phenolic Contents, Anthocyanin and Anthocyanidin
4.4. Determination of Cholinesterases and Beta-secretase 1 (BACE-1) Inhibitory Activities
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Fundings
Conflicts of Interest
References
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmerzaal, T.L.; Kiliaan, A.J.; Gustafson, D.R. 2003–2013: A decade of body mass index, Alzheimer’s disease, and dementia. J. Alzheimers Dis. 2015, 43, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Casey, D.A.; Antimisiaris, D.; O’Brien, J. Drugs for Alzheimer’s disease: Are they effective? Pharm. Therap. 2010, 35, 208–211. [Google Scholar]
- Hosen, S.M.Z.; Rubayed, M.; Dash, R.; Junaid, M.; Mitra, S.; Alam, M.S.; Dey, R. Prospecting and structural insight into the binding of novel plant-derived molecules of Leea indica as inhibitors of BACE1. Curr. Pharm. Des. 2018, 24, 3972–3979. [Google Scholar] [CrossRef] [Green Version]
- Youn, K.; Lee, J.; Ho, C.T.; Jun, M. Discovery of polymethoxyflavones from black ginger (Kaempferia parviflora) as potential beta-secretase (BACE1) inhibitors. J. Funct. Foods 2016, 20, 567–574. [Google Scholar] [CrossRef]
- Seong, S.H.; Ha, M.T.; Min, B.S.; Jung, H.A.; Choi, J.S. Moracin derivatives from Morus Radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci. 2018, 210, 20–28. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Yuan, Q.X.; Zhao, L.Y. The Mulberry (Morus alba L.) Fruit—A review of characteristic components and health benefits. J. Agr. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Tsuda, T. Anthocyanins as functional food factors—Chemistry, nutrition and health promotion. Food Sci. Technol. Res. 2012, 18, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Hidalgo, G.I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A Review. Antioxidants (Basel) 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttisansanee, U.; Charoenkiatkul, S.; Jongruaysup, B.; Tabtimsri, S.; Siriwan, D.; Temviriyanukul, P. Mulberry fruit cultivar ‘Chiang Mai’ prevents beta-amyloid toxicity in PC12 neuronal cells and in a Drosophila model of Alzheimer’s disease. Molecules 2020, 25, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özgen, M.; Serçe, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Ong, C.N.; Liu, X.; Huang, D. Peroxyl radical scavenging capacity, polyphenolics, and lipophilic antioxidant profiles of mulberry fruits cultivated in southern China. J. Agric. Food Chem. 2008, 56, 9410–9416. [Google Scholar] [CrossRef]
- Bae, S.-H.; Suh, H.-J. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Natic, M.M.; Dabic, D.C.; Papetti, A.; Fotiric Aksic, M.M.; Ognjanov, V.; Ljubojevic, M.; Tesic, Z. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.D.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.; Niu, W.; Ding, Y.; Zhang, R.; Shang, X. Analysis and characterisation of anthocyanins in mulberry fruit. Czech J. Food Sci. 2010, 28, 17–126. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Identification and characterisation of anthocyanins from wild mulberry (Morus Nigra L.) growing in Brazil. Food Sci. Technol. Int. 2007, 13, 17–25. [Google Scholar] [CrossRef]
- Miguel, M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011, 1, 7–15. [Google Scholar]
- Tsuda, T.; Shiga, K.; Ohshima, K.; Kawakishi, S.; Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharm. 1996, 52, 1033–1039. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 2003, 51, 628–633. [Google Scholar]
- Sarma, A.D.; Sreelakshmi, Y.; Sharma, R. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry 1997, 45, 671–674. [Google Scholar] [CrossRef]
- Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A.; Packer, L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 2000, 148, 119–123. [Google Scholar] [CrossRef]
- Muselík, J.; García-Alonso, M.; Martín-López, M.P.; Žemlička, M.; Rivas-Gonzalo, J.C. Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int. J. Mol. Sci. 2007, 8, 797–809. [Google Scholar]
- Wang, Z.; Lin, Y.; Li, T.; Dai, F.; Luo, G.; Xiao, G.; Tang, C. Phenolic profiles and antioxidant capacities of mulberry (Morus atropurpurea Roxb.) juices from different cultivars. Int. J. Food Prop. 2019, 22, 1340–1352. [Google Scholar] [CrossRef] [Green Version]
- Estévez, L.; Mosquera, R.A. Molecular structure and antioxidant properties of delphinidin. J. Phys. Chem. A 2008, 112, 10614–10623. [Google Scholar]
- Szwajgier, D. Anticholinesterase activities of selected polyphenols—A short report. Pol. J. Food Nutr. Sci. 2014, 64, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.T.; Orhan, I.; Senol, F.S.; Kartal, M.; Sener, B.; Dvorska, M.; Smejkal, K.; Slapetova, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact. 2009, 181, 383–389. [Google Scholar] [CrossRef]
- Dhananjayan, K.; Arunachalam, S.; Anand Raj, B. Targeting BACE1 (beta-secretase) through polyphenolic compounds—A computational in silico approach with emphasis on binding site analysis. J. Comput. Methods Mol. Des. 2014, 4, 14–24. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Sripum, C.; Kukreja, R.K.; Charoenkiatkul, S.; Kriengsinyos, W.; Suttisansanee, U. The effect of extraction conditions on antioxidant activities and total phenolic contents of different processed Thai Jasmine rice. Int. Food Res. J. 2017, 24, 1644–1650. [Google Scholar]
- Thuphairo, K.; Sornchan, P.; Suttisansanee, U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet Pepper (Capsicum annuum) extracts. Prev. Nutr. Food Sci. 2019, 24, 327–337. [Google Scholar] [CrossRef]
- Jung, H.A.; Min, B.S.; Yokozawa, T.; Lee, J.H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 2009, 32, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Nantakornsuttanan, N.; Thuphairo, K.; Kukreja, R.K.; Charoenkiatkul, S.; Suttisansanee, U. Anti-cholinesterase inhibitory activities of different varieties of chili peppers extracts. Int. Food Res. J. 2016, 23, 1953–1959. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Order | Cultivars | TPCs (mg GAE/g DW) | Anthocyanidin (µg/g DW) | Anthocyanins (µg/g DW) | |
---|---|---|---|---|---|
Cyanidin | Keracyanin | Kuromanin | |||
1 | Morus ‘Krua’ | 3.72 ± 0.18 n | 347.41 ± 32.02 f | 883.55 ± 62.41 h | 1249.03 ± 108.70 g |
2 | Morus ‘Jak’ | 2.75 ± 0.11 o | 45.87 ± 3.01 ghi | 235.19 ± 0.86 mn | 213.03 ± 0.90 mn |
3 | Morus ‘Pai’ | 2.76 ± 0.10 o | 87.58 ± 7.58 ghi | 228.07 ± 2.80 mn | 211.58 ± 2.91 mn |
4 | Morus ‘Pai-Ubon’ | 3.74 ± 0.17 n | 86.50 ± 6.15 ghi | 237.32 ± 0.26 mn | 160.36 ± 1.00 mno |
5 | Morus ‘Poe’ | 3.73 ± 0.12 n | 160.11 ± 8.13 ghi | 522.74 ± 1.79 j | 905.26 ± 4.89 h |
6 | Morus ‘Mae Luke On’ | 4.08 ± 0.39 m | 61.95 ± 5.00 ghi | 155.23 ± 2.71 no | 194.19 ± 1.40 mn |
7 | Morus ‘Som’ | 5.18 ± 0.19 jk | 98.12 ± 4.18 ghi | 235.99 ± 5.41 mn | 172.13 ± 3.05 mn |
8 | Morus ‘Som Yai’ | 4.10 ± 0.38 m | 104.06 ± 11.16 ghi | 299.28 ± 0.40 lm | 263.20 ± 1.78 klmn |
9 | Morus ‘Sida’ | 5.58 ± 0.48 hi | 184.74 ± 16.86 gh | 630.07 ± 1.09 i | 814.19 ± 1.41 h |
10 | Morus ‘Kun Pai’ | 7.87 ± 0.43 e | 1710.50 ± 155.12 bc | 2765.88 ± 42.49 d | 7374.67 ± 30.48 c |
11 | Morus ‘Nakhon Ratchasima 60’ | 3.53 ± 0.20 n | 48.95 ± 5.08 ghi | 161.99 ± 0.30 no | 88.50 ± 0.38 no |
12 | Morus ‘Buri Ram 51’ | 3.70 ± 0.29 n | 107.50 ± 8.29 ghi | 536.22 ± 37.80 j | 222.42 ± 18.22 mn |
13 | Morus ‘Buri Ram 60’ | 4.68 ± 0.23 l | 68.23 ± 0.23 ghi | 372.89 ± 0.03 kl | 309.09 ± 0.78 klm |
14 | Morus ‘Si Sa Ket 33’ | 5.45 ± 0.44 ij | 43.16 ± 4.92 hi | 498.91 ± 0.92 j | 405.97 ± 1.35 jkl |
15 | Morus ‘Number 44’ | 8.84 ± 0.74 d | 143.25 ± 11.45 ghi | 1025.16 ± 5.36 g | 1233.66 ± 19.54 g |
16 | Morus sp. code SKSM 820281 | 7.11 ± 0.58 f | 1789.96 ± 127.59 ab | 4874.70 ± 83.40 c | 6426.53 ± 156.12 d |
17 | Morus sp. code SKSM 14-13-20 | 10.81 ± 0.21 b | 1583.49 ± 113.87 cd | 5848.59 ± 65.45 b | 10141.24 ± 71.43 b |
18 | Morus sp. code SKSM 040691 | 5.05 ± 0.28 k | 62.07 ± 6.66 ghi | 0.00 p | 0.00 o |
19 | Morus sp. code SKSM 810191 | 10.27 ± 0.50 c | 2879.30 ± 228.33 a | 7588.34 ± 36.59 a | 13566.64 ± 37.40 a |
20 | Morus sp. code SKSM 810391 | 0.37 ± 0.01 p | 1502.84 ± 157.69 d | 2408.50 ± 159.13 e | 5447.20 ± 305.14 e |
21 | Morus sp. code SRCM 9124-12 | 5.81 ± 0.19 h | 0.00 i | 403.03 ± 0.92 k | 560.18 ± 2.29 ij |
22 | Morus sp. code SRCM 9801-465 | 7.20 ± 0.48 f | 182.72 ± 14.62 gh | 720.44 ± 61.74 i | 1363.68 ± 111.80 g |
23 | Morus sp. code SRCM 9801-535 | 5.58 ± 0.28 hi | 207.84 ± 10.43 fg | 121.33 ± 8.63 o | 139.19 ± 9.84 mno |
24 | Morus sp. code SRCM 9801-833 | 5.39 ± 0.29 ij | 344.58 ± 29.88 f | 346.69 ± 5.19 kl | 421.43 ± 6.22 jk |
25 | Morus sp. code SRCM 9806-271 | 6.79 ± 0.20 g | 713.78 ± 25.11 e | 1428.44 ± 0.07 f | 2634.51 ± 9.53 f |
26 | Morus sp. code SRCM 9806-287 | 11.86 ± 0.19 a | 676.62 ± 41.02 e | 685.19 ± 11.64 i | 611.59 ± 8.34 i |
27 | Morus sp. code SRCM 9809-34 | 5.55 ± 0.26 hi | 41.25 ± 1.68 hi | 152.75 ± 1.02 no | 247.17 ± 0.20 lmn |
Order | Cultivars | DPPH Radical Scavenging Assay (µmol TE/100 g DW) | FRAP Assay (µmol TE/g DW) | ORAC Assay (µmol TE/g DW) |
---|---|---|---|---|
1 | Morus ‘Krua’ | 0.62 ± 0.05 e | 4.39 ± 0.18 m | 201.81 ± 15.60 cd |
2 | Morus ‘Jak’ | 0.50 ± 0.05 gh | 2.45 ± 0.19 n | 134.19 ± 11.06 gh |
3 | Morus ‘Pai’ | 0.49 ± 0.05 h | 2.30 ± 0.17 n | 151.04 ± 13.62 fg |
4 | Morus ‘Pai-Ubon’ | 0.56 ± 0.05 f | 2.61 ± 0.11 mn | 172.53 ± 15.75 ef |
5 | Morus ‘Poe’ | 0.58 ± 0.05 f | 3.33 ± 0.16 mn | 151.16 ± 12.03 fg |
6 | Morus ‘Mae Luke On’ | 0.45 ± 0.04 h | 14.24 ± 0.84 jk | 130.52 ± 12.01 ghi |
7 | Morus ‘Som | 0.45 ± 0.04 h | 18.50 ± 0.79 h | 254.04 ± 23.15 b |
8 | Morus ‘Som Yai’ | 0.50 ± 0.04 gh | 13.32 ± 0.63 k | 91.92 ± 8.78 klm |
9 | Morus ‘Sida’ | 0.54 ± 0.05 fg | 16.55 ± 1.43 i | 112.16 ± 9.24 hijk |
10 | Morus ‘Kun Pai’ | 1.25 ± 0.02 a | 44.33 ± 0.76 d | 216.42 ± 53.27 c |
11 | Morus ‘Nakhon Ratchasima 60’ | 0.28 ± 0.02 k | 11.02 ± 0.54 l | 131.73 ± 12.37 ghi |
12 | Morus ‘Buri Ram 51’ | 0.32 ± 0.03 j | 11.37 ± 0.47 l | 103.07 ± 6.55 jkl |
13 | Morus ‘Buri Ram 60’ | 0.37 ± 0.03 i | 15.50 ± 0.90 ij | 158.20 ± 11.01 f |
14 | Morus ‘Si Sa Ket 33’ | 0.37 ± 0.01 i | 15.56 ± 1.33 ij | 178.98 ± 17.51 e |
15 | Morus ‘Number 44’ | 0.83 ± 0.08 b | 27.90 ± 1.10 g | 251.84 ± 21.98 b |
16 | Morus sp. code SKSM 820281 | 0.50 ± 0.03 gh | 43.28 ± 2.85 d | 192.66 ± 48.44 de |
17 | Morus sp. code SKSM 14-13-20 | 0.72 ± 0.05 c | 66.96 ± 6.48 b | 259.25 ± 40.32 b |
18 | Morus sp. code SKSM 040691 | 0.67 ± 0.06 d | 14.70 ± 0.20 ijk | 86.63 ± 7.72 lm |
19 | Morus sp. code SKSM 810191 | 0.75 ± 0.04 c | 63.97 ± 3.84 c | 283.20 ± 36.56 a |
20 | Morus sp. code SKSM 810391 | 0.75 ± 0.07 c | 117.87 ± 1.77 a | 109.74 ± 3.64 ijk |
21 | Morus sp. code SRCM 9124-12 | 0.73 ± 0.06 c | 15.75 ± 0.53 ij | 64.03 ± 4.32 n |
22 | Morus sp. code SRCM 9801-465 | 0.55 ± 0.03 f | 3.06 ± 0.23 mn | 77.71 ± 3.84 mn |
23 | Morus sp. code SRCM 9801-535 | 0.56 ± 0.05 f | 16.64 ± 3.17 i | 103.79 ± 8.10 jkl |
24 | Morus sp. code SRCM 9801-833 | 0.55 ± 0.04 f | 14.20 ± 0.71 jk | 113.79 ± 9.44 hijk |
25 | Morus sp. code SRCM 9806-271 | 0.67 ± 0.06 d | 30.15 ± 1.52 f | 151.52 ± 11.82 fg |
26 | Morus sp. code SRCM 9806-287 | 0.85 ± 0.07 b | 40.52 ± 1.16 e | 116.96 ± 9.64 hij |
27 | Morus sp. code SRCM 9809-34 | 0.55 ± 0.03 f | 15.28 ± 1.34 ij | 82.85 ± 5.84 lmn |
Order | Cultivars | Percentage of Inhibition (%) | ||
---|---|---|---|---|
AChE | BChE | BACE-1 | ||
1 | Morus ‘Krua’ | 44.91 ± 2.62 f | 42.38 ± 2.35 j | 41.58 ± 7.89 j |
2 | Morus ‘Jak’ | 37.35 ± 1.54 ij | 51.16 ± 4.58 g | 58.61 ± 0.41 efg |
3 | Morus ‘Pai’ | 34.68 ± 3.11 jkl | 51.30 ± 3.62 g | 38.78 ± 2.26 j |
4 | Morus ‘Pai-Ubon’ | 37.09 ± 3.44 ijk | 48.36 ± 3.63 gh | 71.23 ± 0.00 bc |
5 | Morus ‘Poe’ | 33.70 ± 3.31 lm | 55.34 ± 1.05 f | 37.48 ± 2.07 jk |
6 | Morus ‘Mae Luke On’ | 45.71 ± 3.95 ef | 56.52 ± 5.16 ef | 51.27 ± 3.32 ghi |
7 | Morus ‘Som’ | 56.29 ± 2.41 b | 77.02 ± 3.14 a | 63.01 ± 5.22 de |
8 | Morus ‘Som Yai’ | 53.89 ± 4.20 bc | 63.16 ± 1.03 c | 63.00 ± 7.50 de |
9 | Morus ‘Sida’ | 49.65 ± 2.53 d | 64.86 ± 2.39 c | 52.81 ± 1.37 ghi |
10 | Morus ‘Kun Pai’ | 35.37 ± 1.77 jkl | 41.78 ± 1.28 j | 48.93 ± 1.66 i |
11 | Morus ‘Nakhon Ratchasima 60’ | 60.09 ± 3.62 a | 62.72 ± 5.23 c | 54.21 ± 2.69 ghi |
12 | Morus ‘Buri Ram 51’ | 53.66 ± 3.40 bc | 71.33 ± 6.79 b | 65.54 ± 3.44 cde |
13 | Morus ‘Buri Ram 60’ | 45.61 ± 3.96 ef | 56.85 ± 1.50 ef | 70.65 ± 1.02 bc |
14 | Morus ‘Si Sa Ket 33’ | 45.85 ± 4.47 ef | 62.99 ± 3.03 c | 76.32 ± 2.06 ab |
15 | Morus ‘Number 44’ | 50.98 ± 2.73 cd | 61.31 ± 3.53 cd | 70.45 ± 3.54 bc |
16 | Morus sp. code SKSM 820281 | 34.05 ± 3.70 klm | 48.76 ± 4.59 gh | 55.12 ± 1.38 fghi |
17 | Morus sp. code SKSM 14-13-20 | 31.37 ± 2.25 m | 37.80 ± 3.79 k | 77.11 ± 5.60 ab |
18 | Morus sp. code SKSM 040691 | 26.10 ± 1.44 n | 43.86 ± 0.91 ij | 54.60 ± 3.59 fghi |
19 | Morus sp. code SKSM 810191 | 43.68 ± 2.28 fg | 59.05 ± 2.28 de | 66.34 ± 2.06 cd |
20 | Morus sp. code SKSM 810391 | 21.87 ± 1.48 o | 22.02 ± 2.20 m | 61.64 ± 6.11 def |
21 | Morus sp. code SRCM 9124-12 | 48.52 ± 4.78 de | 50.57 ± 2.22 gh | 31.28 ± 1.78 k |
22 | Morus sp. code SRCM 9801-465 | 22.96 ± 1.42 o | 21.27 ± 1.96 m | 58.10 ± 3.23 efgh |
23 | Morus sp. code SRCM 9801-535 | 39.98 ± 2.72 hi | 61.63 ± 3.07 cd | 51.03 ± 0.36 hi |
24 | Morus sp. code SRCM 9801-833 | 36.50 ± 2.07 jkl | 48.75 ± 1.48 gh | 62.85 ± 0.97 de |
25 | Morus sp. code SRCM 9806-271 | 41.21 ± 3.00 gh | 51.87 ± 4.24 g | 76.12 ± 5.45 ab |
26 | Morus sp. code SRCM 9806-287 | 26.63 ± 2.20 n | 30.00 ± 2.60 l | 78.67 ± 5.70 a |
27 | Morus sp. code SRCM 9809-34 | 36.17 ± 3.55 jkl | 47.06 ± 3.21 hi | 64.79 ± 2.52 cde |
Parameters | TPCs | Cyanidin | Keracyanin | Kuromanin | DPPH | FRAP | ORAC | Anti-AChE | Anti-BChE | Anti-BACE1 |
---|---|---|---|---|---|---|---|---|---|---|
TPCs | 1 | |||||||||
Cyanidin | 0.476 * | 1 | ||||||||
Keracyanin | 0.540 ** | 0.943 ** | 1 | |||||||
Kuromanin | 0.505 ** | 0.963 ** | 0.977 ** | 1 | ||||||
DPPH | 0.502 ** | 0.527 ** | 0.381 | 0.498 ** | 1 | |||||
FRAP | 0.242 | 0.772 ** | 0.678 ** | 0.725 ** | 0.481 * | 1 | ||||
ORAC | 0.421 * | 0.543 ** | 0.626 ** | 0.610 ** | 0.269 | 0.300 | 1 | |||
Anti-AChE | −0.138 | −0.305 | −0.204 | −0.247 | −0.418 * | −0.360 | 0.178 | 1 | ||
Anti-BChE | −0.154 | −0.297 | −0.193 | −0.252 | −0.480 * | −0.413 * | 0.208 | 0.860 ** | 1 | |
Anti-BACE1 | 0.416 * | 0.178 | 0.213 | 0.175 | −0.350 | 0.300 | 0.269 | −0.037 | −0.020 | 1 |
Time (min) | Solvent A | Solvent B |
---|---|---|
0 | 88 | 12 |
6 | 88 | 12 |
8 | 85 | 15 |
25 | 85 | 15 |
25 | 88 | 12 |
30 | 88 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temviriyanukul, P.; Sritalahareuthai, V.; Jom, K.N.; Jongruaysup, B.; Tabtimsri, S.; Pruesapan, K.; Thangsiri, S.; Inthachat, W.; Siriwan, D.; Charoenkiatkul, S.; et al. Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand. Molecules 2020, 25, 2600. https://doi.org/10.3390/molecules25112600
Temviriyanukul P, Sritalahareuthai V, Jom KN, Jongruaysup B, Tabtimsri S, Pruesapan K, Thangsiri S, Inthachat W, Siriwan D, Charoenkiatkul S, et al. Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand. Molecules. 2020; 25(11):2600. https://doi.org/10.3390/molecules25112600
Chicago/Turabian StyleTemviriyanukul, Piya, Varittha Sritalahareuthai, Kriskamol Na Jom, Butsara Jongruaysup, Somying Tabtimsri, Kanchana Pruesapan, Sirinapa Thangsiri, Woorawee Inthachat, Dalad Siriwan, Somsri Charoenkiatkul, and et al. 2020. "Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand" Molecules 25, no. 11: 2600. https://doi.org/10.3390/molecules25112600
APA StyleTemviriyanukul, P., Sritalahareuthai, V., Jom, K. N., Jongruaysup, B., Tabtimsri, S., Pruesapan, K., Thangsiri, S., Inthachat, W., Siriwan, D., Charoenkiatkul, S., & Suttisansanee, U. (2020). Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand. Molecules, 25(11), 2600. https://doi.org/10.3390/molecules25112600