Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overall Visual Fruit Evaluation
2.2. Sensory Analysis
2.3. Chromatographic Analysis
2.3.1. Qualitative Analysis
2.3.2. Quantitative Analysis
2.4. Multivariate Analysis
3. Materials and Methods
3.1. Sensory Analysis
3.2. Sample Preparation for Chromatographic Analysis
3.3. GC × GC-TOF-MS Analysis
3.4. Data Processing and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sansavini, S.; Donati, F.; Costa, F.; Tartarini, S. Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: new varieties for the european market. J. Fruit Ornam. Plant Res. 2004, 12, 13–52. [Google Scholar]
- Burke, J.M.; Arnold, B.J. Genetics and the fitness of hybrids. Annu. Rev. Genet. 2001, 35, 31–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubinska-Szczygeł, M.; Pudlak, D.; Dymerski, T.; Namieśnik, J. Rapid assessment of the authenticity of limequat fruit using the electronic nose and gas chromatography coupled with mass spectrometry. Mon. Fur Chem. 2018, 7, 1605–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.-J.; Berhow, M.; Robertson, G.H.; Hasegawa, S. Limonoids and flavonoids in juices of oroblanco and melogold grapefruit hybrids. J. Food Sci. 1998, 63, 57–60. [Google Scholar] [CrossRef]
- Zang, J. Produce Report: Israel Optimistic About Market for Grapefruit in China. 2019. Available online: https://www.producereport.com/article/israel-optimistic-about-market-grapefruit-china (accessed on 25 May 2020).
- Gorinstein, S.; Cvikrová, M.; Machackova, I.; Haruenkit, R.; Park, Y.-S.; Jung, S.-T.; Yamamoto, K.; Ayala, A.L.; Katrich, E.; Trakhtenberg, S. Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem. 2004, 84, 503–510. [Google Scholar] [CrossRef]
- Lubinska-Szczygeł, M.; Różańska, A.; Dymerski, T.; Namieśnik, J.; Katrich, E.; Gorinstein, S. A novel analytical approach in the assessment of unprocessed Kaffir lime peel and pulp as potential raw materials for cosmetic applications. Ind. Crops Prod. 2018, 120, 313–321. [Google Scholar] [CrossRef]
- Shafreen, R.B.; Lubinska-Szczygeł, M.; Różańska, A.; Dymerski, T.; Namieśnik, J.; Katrich, E.; Gorinstein, S. Human serum interactions with phenolic and aroma substances of Kaffir (Citrus hystrix) and Key lime (Citrus aurantifolia) juices. J. Lumin. 2018, 201, 115–122. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R.O.B. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 389, 369–389. [Google Scholar] [CrossRef]
- Kumar Mahawar, M.; Jalgaonkar, K.; Kumar, M.; Singh Meena, V.; Bhushan, B. Determination of Some Physical Properties of Date Palm Fruits (Cv. Khadrawy and Medjool). Acta Agrophysica 2017, 24, 271–277. [Google Scholar] [CrossRef]
- Khan, M. Seedlessness in Citrus (A review). Int. J. Agric. Biol. 2015, 5, 388–391. [Google Scholar]
- Gunness, P.; Kravchuk, O.; Nottingham, S.M.; D’Arcy, B.R.; Gidley, M.J. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Technol. 2009, 52, 164–172. [Google Scholar] [CrossRef]
- Cheong, M.W.; Liu, S.Q.; Zhou, W.; Curran, P.; Yu, B. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chem. 2012, 135, 2505–2513. [Google Scholar] [CrossRef] [PubMed]
- Buettner, A.; Schieberle, P. Evaluation of key aroma compounds in hand-squeezed grapefruit juice (Citrus paradisi Macfayden) by quantitation and flavor reconstitution experiments. J. Agric. Food Chem. 2001, 49, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Kerdchoechuen, O.; Laohakunjit, N.; Tussavil, P. Effect of Starch-Based Edible Coatings on Quality of Minimally Processed Pummelo (Citrus maxima Merr.). Int. J. Fruit Sci. 2011, 37–41. [Google Scholar] [CrossRef]
- Xi, W.; Fang, B.; Zhao, Q.; Jiao, B.; Zhou, Z. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties. Food Chem. 2014, 161, 230–238. [Google Scholar] [CrossRef]
- Lim, H.-K.; Moon, J.Y.; Kim, H.; Cho, M.; Cho, S.K. Induction of apoptosis in U937 human leukaemia cells by the hexane fraction of an extract of immature Citrus grandis Osbeck fruits. Food Chem. 2009, 114, 1245–1250. [Google Scholar] [CrossRef]
- Sawamura, M.; Kuriyama, T. Quantitative determination of volatile constituents in the pummelo (citrus grandis osbeck forma tosa-buntan). J. Agric. Food Chem. 1988, 36, 567–569. [Google Scholar] [CrossRef]
- Gorinstein, S.; Caspi, A.; Libman, I.; Katrich, E.; Lerner, H.T.; Trakhtenberg, S. Fresh israeli jaffa sweetie juice consumption improves lipid metabolism and increases antioxidant capacity in hypercholesterolemic patients suffering from coronary artery disease: Studies in Vitro and in humans and positive changes in albumin and fibrinog. J. Agric. Food Chem. 2004, 52, 5215–5222. [Google Scholar] [CrossRef]
- Gorinstein, S.; Haruenkit, R.; Park, Y.-S.; Jung, S.-T.; Zachwieja, Z.; Jastrzebski, Z.; Katrich, E.; Trakhtenberg, S.; Belloso, O.M. Bioactive compounds and antioxidant potential in fresh and dried Jaffa® sweeties, a new kind of citrus fruit. J. Sci. Food Agric. 2004, 84, 1459–1463. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sharon-Asa, L.; Shalit, M.; Frydman, A.; Bar, E.; Holland, D.; Or, E.; Lavi, U.; Lewinsohn, E.; Eyal, Y. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 2003, 36, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Hakim, I.A.; Hartz, V.; Graver, E.; Whitacre, R.; Alberts, D. Development of a questionnaire and a database for assessing dietary D-limonene intake. Public Health Nutr. 2002, 5, 939–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggiotti, S.; Mascini, M.; Pittia, P.; Della Pelle, F. Compagnone, D. Headspace Volatile Evaluation of Carrot Samples—Comparison of GC/MS and AuNPs-hpDNA-Based E-Nose. Foods 2019, 293, 1–10. [Google Scholar]
- Ren, J.-N.; Tai, Y.-N.; Dong, M.; Shao, J.-H.; Yang, S.-Z.; Pan, S.-Y.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Bi, J.X.; Zhang, Y.Y.Y.; Zhang, Y.Y.Y.; Fan, G.; Xiao, L.Y.; Si, Y.P.; Xie, B.J.; Zhang, Y.Y.Y.; Zhang, Y.Y.Y.; et al. Characterization of aroma active compounds in fruit juice and peel oil of Jinchen sweet orange fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 2008, 13, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xie, Y.; Liu, C.; Chen, S.; Hu, S.; Xie, Z.; Deng, X.; Xu, J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem. 2017, 230, 316–326. [Google Scholar] [CrossRef]
- Rodríguez, A.; San Andrés, V.; Cervera, M.; Redondo, A.; Alquézar, B.; Shimada, T.; Gadea, J.; Rodrigo, M.; Zacarías, L.; Palou, L.; et al. The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signal. Behav. 2011, 6, 1820–1823. [Google Scholar] [CrossRef] [Green Version]
- Braddock, R.J.; Cadwallader, K.R. Bioconversion of Citrus d-Limonene. In Fruit Flavors Biogenesis, Characterization, and Authentication; Rouseff, L.R., Leahy, M.M., Eds.; American Chemical Society: Washington, DC, USA, 1995; pp. 142–148. [Google Scholar] [CrossRef]
- Gracka, A.; Jeleń, H.H.; Majcher, M.; Siger, A.; Kaczmarek, A. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting. J. Chromatogr. A 2016, 1428, 292–304. [Google Scholar] [CrossRef]
- Cultivar, S. The Volatile constituents in the peel and pulp of a green thai mango, khieo sawoei cultivar (mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Technical Committee ISO/TC 34, Agricultural food products. International Standard 6564:1985 Sensory Analysis—Methodology—Flavour Profile Methods. 1985. Ed. 1. Available online: https://www.saiglobal.com/PDFTemp/Previews/OSH/ISO/IPDF0019/T012966E.PDF (accessed on 25 May 2020).
Sample Availability: Samples are not available from the authors. |
Property of Fruit | Sweetie | Grapefruit | Pummelo |
---|---|---|---|
Diameter at the widest point [mm] | 129.7 ± 5.1 | 145.3 ± 7.2 | 189 ± 11 |
Peel color | yellow-green | yellow | light green |
Thickness of peel [mm] | 17.00 ± 0.80 | 16.70 ± 0.40 | 19.5 ± 1.2 |
Flesh colors | grey-yellow | yellow | straw |
Presence of seed | not noticed | few | many |
Shape | round, slightly flattened | round, slightly flattened | round, elongated |
Weight [g] | 259 ± 27 | 283 ± 10 | 875 ± 86 |
Chemical Compound | CAS Number | Average | ID | S | G | P | Odor Type | Flavor Type | |
---|---|---|---|---|---|---|---|---|---|
RT1 [s] | RT2 [s] | ||||||||
Terpenes | |||||||||
p-Menthane | 99-82-1 | 862 | 1.16 | MS | + | + | + | pine | n.d. |
p-Cymene | 99-87-6 | 938 | 1.58 | MS | + | + | + | terpenic | terpenic |
Ocimene | 6874-44-8 | 970 | 1.41 | MS, RT | + | + | + | fruity | n.d. |
γ-Terpinene | 99-85-4 | 926 | 1.36 | MS, RT | + | + | + | terpenic | terpenic |
β-Myrcene | 123-35-3 | 878 | 1.38 | MS, RT | + | + | + | spicy | woody |
Limonene | 138-86-3 | 950 | 1.38 | MS, RT | + | + | + | citrus | citrus |
α-Pinene | 80-56-8 | 790 | 1.22 | MS, RT | + | + | + | herbal | woody |
Citronellene | 2436-90-0 | 806 | 1.20 | MS | + | + | + | floral | n.d. |
β-Pinene | 127-91-3 | 858 | 1.30 | MS, RT | + | + | + | herbal | pine |
α-Terpineol | 98-55-5 | 1186 | 2.67 | MS, RT | + | - | + | terpenic | citrus |
Alcohols | |||||||||
Hexanol | 111-27-3 | 654 | 3.47 | MS | + | + | + | herbal | green |
Pentanol | 71-41-0 | 486 | 3.66 | MS | + | + | + | fermented | fusel |
3-Hexenol | 928-97-2 | 638 | 0.15 | MS | + | + | + | green | green |
2-Hexenol | 2305-21-7 | 658 | 0.27 | MS | + | + | + | fruity | fruity |
Octanol | 111-87-5 | 1002 | 2.69 | MS | + | + | + | waxy | waxy |
Aldehydes | |||||||||
Hexanal | 66-25-1 | 518 | 1.84 | MS | + | + | + | green | green |
Heptanal | 111-71-7 | 702 | 1.79 | MS | + | + | + | green | solvent |
Nonanal | 124-19-6 | 1046 | 1.70 | MS | + | + | + | aldehydic | aldehydic |
Octanal | 124-13-0 | 878 | 1.76 | MS | + | + | + | aldehydic | aldehydic |
Esters | |||||||||
Ethyl 2-methylbutyrate | 7452-79-1 | 626 | 1.44 | MS | + | + | + | fruity | fruity |
Ethyl butanoate | 105-54-4 | 534 | 1.56 | MS | + | + | + | fruity | fruity |
Ethyl hexanoate | 123-66-0 | 882 | 1.50 | MS | + | + | + | fruity | fruity |
Ethyl isobutyrate | 97-62-1 | 470 | 1.43 | MS | + | + | + | fruity | ethereal |
Ethyl octanoate | 106-32-1 | 1190 | 1.49 | MS | + | + | + | waxy | waxy |
Hydrocarbons | |||||||||
2,6-Dimethyl-2,6-octadiene | 2792-39-4 | 902 | 1.23 | MS | + | + | + | n.d. | n.d. |
Octane | 111-65-9 | 554 | 1.08 | MS | + | + | + | gasoline | n.d. |
Nonane | 111-84-2 | 734 | 1.08 | MS | + | + | + | gasoline | n.d. |
4-Decene | 19689-18-0 | 766 | 1.10 | MS | + | + | + | n.d. | n.d. |
Tetradecane | 629-59-4 | 1362 | 1.10 | MS | + | + | + | n.d. | n.d. |
Ketones | |||||||||
3-Octanone | 106-68-3 | 854 | 1.68 | MS | + | + | + | herbal | mushroom |
6-Methyl-5-hepten-2-one | 110-93-0 | 850 | 2.06 | MS | + | + | + | citrus | n.d. |
2-Heptanone | 110-43-0 | 686 | 1.82 | MS | + | + | + | cheesy | cheesy |
4-Nonanone | 4485-09-0 | 998 | 1.58 | MS | + | − | + | n.d. | n.d. |
6-Dodecanone | 6064-27-3 | 1482 | 1.56 | MS | + | − | + | n.d. | n.d. |
Others | |||||||||
2-Pentylfuran | 3777-69-3 | 874 | 1.55 | MS | + | + | + | fruity | green |
Monoterpene | R2 | S | P | G | LOQ | LOD |
---|---|---|---|---|---|---|
α-Pinene | 0.999 | 0.8241 ± 0.0096 | <LOQ | 2.851 ± 0.015 | 0.657 | 0.219 |
Limonene | 0.996 | 5.298 ± 0.058 | 2.75 ± 0.54 | 15.79 ± 0.30 | 1.416 | 0.472 |
Ocimene | 0.995 | 1.600 ± 0.097 | <LOQ | 2.057 ± 0.078 | 1.504 | 0.501 |
β-Myrcene | 0.991 | 4.1 ± 0.14 | <LOQ | 3.22 ± 0.029 | 2.077 | 0.692 |
γ-Terpinene | 0.997 | 7.27 ± 0.34 | <LOQ | 2.566 ± 0.026 | 1.152 | 0.384 |
α-Terpineol | 0.992 | 20.96 ± 0.70 | <LOQ | 87.9 ± 2.0 | 1.928 | 0.643 |
Chemical Compound | OT [ppm] | Sweetie | Pummelo | Grapefruit |
---|---|---|---|---|
OAV + SD [-] | ||||
α-Pinene | 0.19 | 4.335 ± 0.051 | - | 15.01 ± 0.080 |
Limonene | 0.2 | 26.49 ± 0.29 | 13.8 ± 2.7 | 78.95 ± 1.5 |
Ocimene | 0.034 | 47.1 ± 2.9 | - | 60.5 ± 2.3 |
β-Myrcene | 0.1 | 41 ± 1.4 | - | 32.20 ± 0.29 |
γ-Terpinene | 0.26 | 28.0 ± 1.3 | - | 9.86 ± 0.10 |
α-Terpineol | 5 | 4.2 ± 0.14 | - | 17.58 ± 0.40 |
Element | Parameter | Value |
---|---|---|
Carrier gas | Hydrogen | 1 mL/min |
Front inlet | Temperature | 250 °C |
Temperature program | Initial temperature | I. column 40 °C |
II column 45 °C | ||
Modulator 60 °C | ||
Time to maintain the initial temperature | I, II column, modulator 210 s | |
Temperature rate | I, II. column, modulator 6 °C/min | |
Final temperature | I column 250 °C | |
II. column 255 °C | ||
Modulator 265 °C | ||
Time to maintain the set temperature | I column 300 s | |
II column, modulator 350 s | ||
Modulation | Modulation period | 4 s |
Modulation | Hot pulse time | 0.80 s |
Modulation | Cool time between stages | 1.20 s |
Cooling medium | Type of medium | Liquid nitrogen |
Detector | Mass range | 40–400 u |
Detector | Voltage | 1600 V |
Detector | Acquisition rate | 125 spectra/s |
Detector | Electron Energy | −70 V |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubinska-Szczygeł, M.; Polkowska, Ż.; Dymerski, T.; Gorinstein, S. Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits. Molecules 2020, 25, 2748. https://doi.org/10.3390/molecules25122748
Lubinska-Szczygeł M, Polkowska Ż, Dymerski T, Gorinstein S. Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits. Molecules. 2020; 25(12):2748. https://doi.org/10.3390/molecules25122748
Chicago/Turabian StyleLubinska-Szczygeł, Martyna, Żaneta Polkowska, Tomasz Dymerski, and Shela Gorinstein. 2020. "Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits" Molecules 25, no. 12: 2748. https://doi.org/10.3390/molecules25122748
APA StyleLubinska-Szczygeł, M., Polkowska, Ż., Dymerski, T., & Gorinstein, S. (2020). Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits. Molecules, 25(12), 2748. https://doi.org/10.3390/molecules25122748