The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Experimental Conditions
3.2. Chemical Analyses
3.2.1. Proximate Composition and Energetic Value
3.2.2. Tocopherols
3.2.3. Sugars
3.2.4. Organic Acids
3.2.5. Fatty Acids
3.2.6. Phenolic Compounds
3.3. Antioxidant Activity
3.3.1. OxHLIA Assay
3.3.2. TBARS Assay
3.4. Hepatotoxicity and Cytotoxicity Assays
3.5. Antimicrobial Properties
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corrêa, R.C.G.; Di Gioia, F.; Ferreira, I.C.F.R.; Petropoulos, S.A. Herbs used in the Mediterranean. In The Mediterranean Diet; Preedy, V., Watson, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Carvalho, A.M.; Morales, R. Persistence of Wild Food and Wild Medicinal Plant Knowledge in a Northeastern Region of Portugal. In Ethnobot. Ethnobotany in the New Europe: People, Health and wild Plant Resources; Pardo-de-Santayana, M., Pieroni, A., Eds.; Berghahn Books: New York, NY, USA, 2010; pp. 147–172. [Google Scholar]
- Psaroudaki, A.; Dimitropoulakis, P.; Constantinidis, T.; Katsiotis, A.; Skaracis, G.N. Ten indigenous edible plants: Contemporary use in eastern Crete, Greece. Cult. Agric. Food Environ. 2012, 34, 172–177. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144–151. [Google Scholar] [CrossRef] [PubMed]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molina, M.; Tardío, J. Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phyther. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef] [Green Version]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- de Cortes Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants; de Cortes Sánchez-Mata, M., Tardío, J., Eds.; Springer: Berlin, Germany, 2011. [Google Scholar]
- Łuczaj, Ł.; Pieroni, A.; Tardío, J.; Pardo-De-Santayana, M.; Sõukand, R.; Svanberg, I.; Kalle, R. Wild food plant use in 21st century Europe: The disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc. Bot. Pol. 2012, 81, 359–370. [Google Scholar] [CrossRef]
- Marrelli, M.; Loizzo, M.R.; Nicoletti, M.; Menichini, F.; Conforti, F. In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with α-amylase and pancreatic lipase inhibitory activities. J. Sci. Food Agric. 2014, 94, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Pardo-de-Santayana, M.; Tardío, J.; Blanco, E.; Carvalho, A.M.; Lastra, J.J.; San Miguel, E.; Morales, R. Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): A comparative study. J. Ethnobiol. Ethnomed. 2007, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanzani, P.; Rossetto, M.; De Marco, V.; Sacchetti, L.E.; Paoletti, M.G.; Rigo, A. Wild Mediterranean Plants as Traditional Food: A Valuable Source of Antioxidants. J. Food Sci. 2011, 76, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gioia, F.; Avato, P.; Serio, F.; Argentieri, M.P. Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. J. Food Compos. Anal. 2018, 69, 197–204. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 1–23. [Google Scholar]
- Petropoulos, S.A.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Papafilippaki, A.; Nikolaidis, N.P. Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Sci. Hortic. (Amsterdam) 2020, 261, 108942. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Michela, M.; Tarantino, E.; Gatta, G.; Beta, L.; Miller, F.; Cichorium, L.; et al. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Tawaha, A.; Al-Tawaha, A.R.; Gammoh, S.; Ereifej, K.I.; Al-Karaki, G.; Hamasha, H.R.; Tranchant, C.C.; et al. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system. Ind. Crop. Prod. 2019, 141, 111746. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. The optimization of nitrogen fertilization regulates crop performance and quality of processing tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Polyzos, N.; Antoniadis, V.; Barros, L.; Ferreira, I.C.F.R. The Impact of fertilization regime on the crop performance and chemical composition of potato (Solanum tuberosum L.) cultivated in central Greece. Agronomy 2020, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkanis, A.C.; Petropoulos, S.A. Physiological and growth responses of several genotypes of common purslane (Portulaca oleracea L.) under Mediterranean semi-arid conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Karkanis, A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R.; Ntatsi, G.; Petrotos, K.; Lykas, C.; Khah, E. Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): An alternative source of omega-3 fatty acids. Plant Foods Hum. Nutr. 2015, 70, 420–426. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Antoniadis, V.; Barros, L.; Ferreira, I. Nutrient solution composition and growing season affect yield and chemical composition of Cichorium spinosum plants. Sci. Hortic. (Amsterdam) 2018, 231, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Fontana, E.; Hoeberechts, J.; Nicola, S.; Cros, V.; Palmegiano, G.B.; Peiretti, P.G. Nitrogen concentration and nitrate ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. J. Sci. Food Agric. 2006, 86, 2417–2424. [Google Scholar] [CrossRef]
- Palaniswamy, U.R.; McAvoy, R.J.; Bible, B. Oxalic acid concentrations in purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. (Amsterdam) 2004, 629, 299–305. [Google Scholar]
- Szalai, G.; Dai, N.; Danin, A.; Dudai, N.; Barazani, O. Effect of nitrogen source in the fertilizing solution on nutritional quality of three members of the Portulaca oleracea aggregate. J. Sci. Food Agric. 2010, 90, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, L.; Chen, Q.; Ding, W.; Dai, P.; Hu, Y.; Yu, Y.; Jin, C.; Lin, X. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea L.) genotypes by inhibiting root uptake of nitrate. Food Chem. 2015, 186, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.S.Y.; Lin, X.Y.; Zhang, Y.P.S.Y.; Zheng, S.J.; Du, S.T. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [Green Version]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.L.; Sokovic, M. Antifungal activity of secondary metabolites of Centaurea raphanina ssp. mixta, growing wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.; Hu, Y.; Liu, W.; Bi, Q.; Jin, C.; Lu, L.; Lin, X. Effect of nitrogen limitation on antioxidant qualities is highly associated with genotypes of lettuce (Lactuca sativa L.). Pedosphere 2020, 30, 414–425. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, N.; Li, H.; Jiang, Y.; Jabeen, Z.; Shamsi, I.H.; Ali, E.; Jiang, L. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J. Zhejiang Univ. Sci. B 2014, 15, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 2013, 163, 23–32. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef] [PubMed]
- Keles, Y.; Oncel, I. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 2002, 163, 783–790. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, F.; Sacchetti, G.; Tosi, B.; Fogagnolo, M.; Chillemi, G.; Lazzarin, R.; Bruni, A. Variation in the content of the main guaianolides and sugars in Cichorium intybus var. “Rosso di Chioggia” selections during cultivation. Food Chem. 2002, 76, 139–147. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Fernandes, A.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Himénez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-García, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part II: Plants with hepato-, neuro-, nephro- and immunotoxic effects. Food Chem. Toxicol. 2016, 92, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; Watanabe, M.; Watanabe, Y.; Shimada, N. Rate of oxalate biosynthesis from glycolate and ascorbic acid in spinach leaves. Soil Sci. Plant Nutr. 1993, 39, 627–634. [Google Scholar] [CrossRef]
- Petropoulos, S.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Martins, D.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chem. 2011, 125, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Azzi, A.; Stocker, A. Vitamin E: Non-antioxidant roles. Prog. Lipid Res. 2000, 39, 231–255. [Google Scholar] [CrossRef]
- Freyer, M.J. The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant. Cell Environ. 1992, 15, 381–392. [Google Scholar] [CrossRef]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C.F.R. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crop Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- Kubacey, T.; Haggag, E.; El-Toumy, S.; Ahmed, A.; El-Ashmawy, I.; Youns, M. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J. Pharm. Res. 2012, 5, 3352–3361. [Google Scholar]
- Erol-Dayi, Ö.; Pekmez, M.; Bona, M.; Aras-Perk, A.; Arda, N. Total phenolic contents, antioxidant activities cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa C. spicata. Free Radic. Antioxid. 2011, 1, 31–36. [Google Scholar] [CrossRef]
- Koukoulitsa, C.; Geromichalos, G.D.; Skaltsa, H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp. J. Comput. Aided. Mol. Des. 2005, 19, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Mehmet, S.; Torlak, E. Antibacterial activities of extracts from twelve Centaurea species from Turkey. Arch. Biol. Sci. 2011, 63, 685–690. [Google Scholar] [CrossRef]
- Cirić, A.; Karioti, A.; Koukoulitsa, C.; Soković, M.; Skaltsa, H. Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem. Biodivers. 2012, 9, 2843–2853. [Google Scholar] [CrossRef]
- Karioti, A.; Skaltsa, H.; Lazari, D.; Sokovic, M.; Garcia, B.; Harvala, C. Secondary metabolites from Centaurea deusta with antimicrobial activity. Zeitschrift fur Naturforsch. Sect. C J. Biosci. 2002, 57, 75–80. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International. Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Silva, A.R.; Fernandes, Â.; García, P.A.; Barros, L.; Ferreira, I.C.F.R. Cytinus hypocistis (L.) L. subsp. macranthus Wettst.: Nutritional characterization. Molecules 2019, 24, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crop. Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2- carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokovic, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Harvest * | Nitrogen Level (ppm) | Fresh Weight (g Per Plant) | Rosette Diameter (cm) | Number of Leaves Per Plant | Leaf Thickness (mm) |
---|---|---|---|---|---|
1st | 0 | 6.93 ± 0.79c | 21.33 ± 1.12a | 12.5 ± 1.7a | 0.80 ± 0.14a |
200 | 8.88 ± 0.98a | 22.53 ± 1.63a | 12.40 ± 1.95a | 0.74 ± 0.07a | |
400 | 7.12 ± 0.40bc | 22.33 ± 1.89a | 12.53 ± 1.66a | 0.72 ± 0.09a | |
600 | 7.56 ± 0.51b | 21.80 ± 1.77a | 13.53 ± 1.84a | 0.74 ± 0.11a |
Harvest * | Nitrogen Level (ppm) | Moisture | Fat | Proteins | Ash | Carbohydrates | Energy |
---|---|---|---|---|---|---|---|
1st | 0 | 88.5 ± 0.8d | 0.35 ± 0.01f | 3.26 ± 0.01d | 1.90 ± 0.01a | 6.0 ± 0.1a | 40.1 ± 0.1c |
200 | 88.7 ± 0.5d | 0.34 ± 0.01f | 3.90 ± 0.04b | 1.93 ± 0.09a | 5.16 ± 0.03c | 39.3 ± 0.3d | |
400 | 88.5 ± 0.1d | 0.39 ± 0.01d | 3.83 ± 0.01c | 1.67 ± 0.04bc | 5.6 ± 0.1b | 41.1 ± 0.1b | |
600 | 87.7 ± 0.3e | 0.46 ± 0.02b | 4.98 ± 0.04a | 1.7 ± 0.2b | 5.1 ± 0.1c | 44.6 ± 0.5a | |
2nd | 0 | 91.5 ± 0.9a | 0.37 ± 0.01e | 1.19 ± 0.01f | 1.32 ± 0.02d | 5.6 ± 0.1b | 30.7 ± 0.1g |
200 | 91.0 ± 0.1b | 0.264 ± 0.001g | 2.57 ± 0.01e | 1.57 ± 0.03c | 4.58 ± 0.02d | 31.0 ± 0.1g | |
400 | 89.4 ± 0.3c | 0.48 ± 0.01a | 3.24 ± 0.04d | 1.76 ± 0.01b | 5.13 ± 0.01c | 37.8 ± 0.1e | |
600 | 90.6 ± 0.2a | 0.45 ± 0.01c | 3.88 ± 0.01b | 1.57 ± 0.01c | 3.55 ± 0.01e | 33.8 ± 0.1f |
Harvest * | Nitrogen Level (ppm) | α-Tocopherol | γ-Tocopherol | Total Tocopherols |
---|---|---|---|---|
1st | 0 | 0.175 ± 0.004g | 0.046 ± 0.003d | 0.230 ± 0.007f |
200 | 0.211 ± 0.004f | 0.056 ± 0.001c | 0.270 ± 0.007e | |
400 | 0.514 ± 0.008c | 0.110 ± 0.009a | 0.63 ± 0.02b | |
600 | 0.448 ± 0.004d | 0.071 ± 0.003b | 0.52 ± 0.01c | |
2nd | 0 | 0.298 ± 0.005e | 0.037 ± 0.002d | 0.340 ± 0.007d |
200 | 0.700 ± 0.001a | 0.041 ± 0.002d | 0.740 ± 0.001a | |
400 | 0.681 ± 0.003b | 0.062 ± 0.001c | 0.750 ± 0.007a | |
600 | 0.70 ± 0.02a | 0.047 ± 0.003d | 0.75 ± 0.02a |
Harvest * | Nitrogen Level (ppm) | Fructose | Glucose | Sucrose | Trehalose | Total Sugars |
---|---|---|---|---|---|---|
1st | 0 | 0.188 ± 0.001d | 0.160 ± 0.001c | 0.093 ± 0.001g | 0.192 ± 0.001e | 0.630 ± 0.001d |
200 | 0.175 ± 0.009de | 0.183 ± 0.008b | 0.107 ± 0.004f | 0.198 ± 0.003d | 0.66 ± 0.02cd | |
400 | 0.13 ± 0.02f | 0.229 ± 0.006a | 0.173 ± 0.007d | 0.262 ± 0.006b | 0.79 ± 0.01b | |
600 | 0.14 ± 0.03ef | 0.184 ± 0.001b | 0.126 ± 0.008e | 0.393 ± 0.002a | 0.84 ± 0.02a | |
2nd | 0 | 0.070 ± 0.01g | 0.059 ± 0.004g | 0.082 ± 0.004h | 0.125 ± 0.001g | 0.336 ± 0.008e |
200 | 0.24 ± 0.03bc | 0.105 ± 0.007e | 0.226 ± 0.005b | 0.215 ± 0.002c | 0.79 ± 0.04b | |
400 | 0.23 ± 0.06c | 0.125 ± 0.005d | 0.246 ± 0.002a | 0.185 ± 0.002e | 0.79 ± 0.07b | |
600 | 0.27 ± 0.01a | 0.085 ± 0.002f | 0.196 ± 0.007c | 0.148 ± 0.003f | 0.700 ± 0.005c |
Harvest * | Nitrogen Level (ppm) | Oxalic Acid | Malic Acid | Ascorbic Acid | Citric Acid | Fumaric Acid | Total Organic Acids |
---|---|---|---|---|---|---|---|
1st | 0 | 946.3 ± 0.1f | 296.7 ± 0.6f | 0.28 ± 0.01b | 553 ± 3b | 0.010 ± 0.001a | 1797 ± 4e |
200 | 1081 ± 3c | 396 ± 3c | 0.28 ± 0.02b | 502 ± 4d | tr | 1980 ± 9c | |
400 | 1114 ± 2b | 339 ± 4d | 0.34 ± 0.02a | 380 ± 4h | tr | 1834 ± 10d | |
600 | 1197 ± 4a | 250 ± 4g | 0.17 ± 0.02c | 642 ± 6a | tr | 2090 ± 14b | |
2nd | 0 | 232.9 ± 0.6h | 223 ± 3h | 0.37 ± 0.02a | 413 ± 4g | 0.010 ± 0.001a | 869 ± 1g |
200 | 873 ± 6g | 461 ± 5b | 0.37 ± 0.01a | 468 ± 5e | tr | 1803 ± 4e | |
400 | 1037 ± 7d | 588 ± 7a | 0.38 ± 0.04a | 525 ± 4c | tr | 2150 ± 18a | |
600 | 965 ± 6e | 327 ± 3e | 0.050 ± 0.005d | 451 ± 3f | tr | 1744 ± 1f |
1st Harvest * (Nitrogen Level; ppm) | 2nd Harvest (Nitrogen Level; ppm) | |||||||
---|---|---|---|---|---|---|---|---|
Fatty Acid | 0 | 200 | 400 | 600 | 0 | 200 | 400 | 600 |
C8:0 | 0.114 ± 0.007b | 0.086 ± 0.004d | 0.039 ± 0.004g | 0.065 ± 0.005e | 0.247 ± 0.001a | 0.048 ± 0.001f | 0.089 ± 0.003d | 0.103 ± 0.005c |
C10:0 | 0.101 ± 0.004b | 0.080 ± 0.003c | 0.050 ± 0.002e | 0.063 ± 0.006d | 0.206 ± 0.005a | 0.061 ± 0.001d | 0.078 ± 0.003c | 0.087 ± 0.006c |
C11:0 | 0.38 ± 0.02c | 0.249 ± 0.004e | 0.195 ± 0.008g | 0.24 ± 0.01e | 0.422 ± 0.007a | 0.214 ± 0.001f | 0.28 ± 0.01d | 0.40 ± 0.01b |
C12:0 | 0.33 ± 0.02b | 0.30 ± 0.02c | 0.255 ± 0.009d | 0.240 ± 0.002e | 0.162 ± 0.001f | 0.157 ± 0.002g | 0.503 ± 0.009a | 0.24 ± 0.02e |
C14:0 | 1.3 ± 0.2h | 3.1 ± 0.2e | 4.24 ± 0.07c | 4.4 ± 0.1b | 2.29 ± 0.07g | 3.2 ± 0.2d | 8.50 ± 0.07a | 2.6 ± 0.2f |
C14:1 | nd | nd | 0.101 ± 0.001b | 0.100 ± 0.002b | nd | nd | nd | 0.123 ± 0.007a |
C15:0 | 0.254 ± 0.009b | 0.25 ± 0.01b | 0.226 ± 0.005c | 0.207 ± 0.005e | 0.38 ± 0.04a | 0.209 ± 0.001e | 0.219 ± 0.005d | 0.218 ± 0.001d |
C16:0 | 20.3 ± 1.0d | 20.8 ± 0.4c | 18.0 ± 0.2g | 18.8 ± 0.5f | 21.8 ± 0.6b | 17.8 ± 0.2h | 19.27 ± 0.07e | 23.22 ± 0.83a |
C17:0 | 0.24 ± 0.01d | 0.25 ± 0.01c | 0.22 ± 0.01f | 0.228 ± 0.006e | 0.63 ± 0.02a | 0.25 ± 0.02c | 0.24 ± 0.02d | 0.264 ± 0.001b |
C18:0 | 1.85 ± 0.05c | 2.0 ± 0.1b | 1.49 ± 0.03f | 1.57 ± 0.07e | 3.25 ± 0.07a | 1.72 ± 0.08d | 1.86 ± 0.02c | 1.74 ± 0.07d |
C18:1n9c | 1.56 ± 0.04d | 1.56 ± 0.02d | 1.78 ± 0.01c | 1.77 ± 0.03c | 2.1 ± 0.1a | 1.49 ± 0.03e | 1.9 ± 0.1b | 1.49 ± 0.01e |
C18:2n6c | 23.72 ± 0.09g | 24.8 ± 0.2d | 24.64 ± 0.01e | 24.8 ± 0.7d | 24.97 ± 0.06c | 25.4 ± 0.2b | 24.54 ± 0.09f | 26.6 ± 0.5a |
C18:3n3 | 47 ± 1a | 43.9 ± 0.7c | 46.94 ± 0.03a | 46 ± 1b | 39.8 ± 0.6e | 47.2 ± 0.4a | 40.1 ± 0.3d | 40.04 ± 0.02d |
C20:0 | 0.31 ± 0.02e | 0.31 ± 0.01e | 0.251 ± 0.002f | 0.24 ± 0.01g | 0.72 ± 0.04a | 0.35 ± 0.01d | 0.368 ± 0.006c | 0.40 ± 0.03b |
C21:0 | 0.086 ± 0.001d | 0.067 ± 0.004f | 0.061 ± 0.001fg | 0.057 ± 0.006g | 0.37 ± 0.02a | 0.078 ± 0.004e | 0.143 ± 0.004c | 0.171 ± 0.003b |
C22:0 | 0.66 ± 0.05de | 0.70 ± 0.05c | 0.517 ± 0.003f | 0.49 ± 0.01g | 0.99 ± 0.04a | 0.596 ± 0.004f | 0.63 ± 0.04ef | 0.82 ± 0.05b |
C23:0 | 0.212 ± 0.004e | 0.216 ± 0.002e | 0.200 ± 0.004f | 0.195 ± 0.003g | 0.50 ± 0.02a | 0.251 ± 0.006c | 0.222 ± 0.002d | 0.307 ± 0.003b |
C24:0 | 1.33 ± 0.05a | 1.32 ± 0.04a | 0.84 ± 0.06e | 0.75 ± 0.05f | 1.12 ± 0.01c | 1.03 ± 0.04d | 1.01 ± 0.02d | 1.25 ± 0.09b |
SFA | 28 ± 1d | 29.7 ± 0.5c | 26.54 ± 0.04e | 27.5 ± 0.3d | 33.1 ± 0.6a | 25.9 ± 0.3f | 33.4 ± 0.1a | 31.8 ± 0.5b |
MUFA | 1.56 ± 0.04d | 1.56 ± 0.02d | 1.88 ± 0.01b | 1.87 ± 0.03b | 2.1 ± 0.1a | 1.49 ± 0.03e | 1.9 ± 0.1b | 1.61 ± 0.01c |
PUFA | 71 ± 1bc | 68.7 ± 0.5d | 71.58 ± 0.03b | 70.6 ± 0.2c | 64.8 ± 0.7f | 72.6 ± 0.2a | 64.7 ± 0.2f | 66.6 ± 0.5e |
PUFA/SFA | 2.53 ± 0.07d | 2.3 ± 0.5e | 2.68 ± 0.03b | 2.6 ± 0.3c | 2.0 ± 0.6h | 2.8 ± 0.2a | 1.9 ± 0.1g | 2.1 ± 0.5f |
n6/n3 | 0.5 ± 0.1c | 0.6 ± 0.1b | 0.52 ± 0.01c | 0.5 ± 0.1c | 0.63 ± 0.03ab | 0.5 ± 0.1c | 0.61 ± 0.05ab | 0.66 ± 0.05a |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 | 14.16 | 349 | 493 | 317 (100) | Myricetin-O-glucoside |
2 | 18.1 | 344 | 477 | 301 (100) | Quercetin-3-O-glucoside |
3 | 18.63 | 334 | 461 | 285 (100) | Kaempherol-O-glucoronide |
4 | 20.4 | 334 | 579 | 285 (100) | Kaempherol-O-hexoside-pentoside |
5 | 22.14 | 334 | 563 | 269 (100) | Apigenin-O-hexoside-pentoside |
6 | 22.9 | 334 | 445 | 269 (100) | Apigenin-O-glucoronide |
7 | 25.44 | 332 | 665 | 621 (100), 285 (45) | Kaempherol-O-malonyl-pentoside |
8 | 28.28 | 286/326 | 549 | 429 (12), 297 (14), 279 (5), 255 (41) | Pinocembrin arabirosyl glucoside |
9 | 29.47 | 286/326 | 563 | 443 (12), 401 (5), 297 (21), 255 (58) | Pinocembrin neohesperidoside |
10 | 31.39 | 288/328 | 591 | 549 (30), 429 (20), 297 (15), 279 (5), 255 (32) | Pinocembrin acetylarabirosyl glucoside |
11 | 31.79 | 285/326 | 605 | 563 (12), 545 (5), 443 (30), 401 (10), 255 (40) | Pinocembrin acetyl neohesperidoside isomer I |
12 | 32.14 | 286/328 | 605 | 563 (10), 545 (5), 443 (28), 401 (9), 255 (39) | Pinocembrin acetyl neohesperidoside isomer II |
1st Harvest * (Nitrogen Level; ppm) | 2nd Harvest (Nitrogen Level; ppm) | |||||||
---|---|---|---|---|---|---|---|---|
Peaks | 0 | 200 | 400 | 600 | 0 | 200 | 400 | 600 |
1 | 0.079 ± 0.001b | 0.077 ± 0.002c | 0.068 ± 0.003d | 0.080 ± 0.001a | 0.054 ± 0.002h | 0.057 ± 0.003f | 0.061 ± 0.002e | 0.055 ± 0.001g |
2 | 0.026 ± 0.001a | 0.022 ± 0.003b | 0.017 ± 0.001d | 0.020 ± 0.001c | 0.013 ± 0.001e | 0.012 ± 0.001f | 0.013 ± 0.001e | 0.012 ± 0.002f |
3 | 0.05 ± 0.001a | 0.05 ± 0.003a | 0.035 ± 0.002bc | 0.037 ± 0.001b | 0.024 ± 0.001e | 0.028 ± 0.001d | 0.033 ± 0.001c | 0.026 ± 0.001d |
4 | 0.024 ± 0.001b | 0.025 ± 0.001a | 0.019 ± 0.001d | 0.022 ± 0.001c | 0.014 ± 0.001g | 0.016 ± 0.003f | 0.016 ± 0.001f | 0.017 ± 0.001e |
5 | 0.023 ± 0.001b | 0.026 ± 0.001a | 0.02 ± 0.01d | 0.022 ± 0.001c | 0.015 ± 0.001f | 0.019 ± 0.001de | 0.019 ± 0.001de | 0.018 ± 0.001e |
6 | 0.024 ± 0.001a | 0.025 ± 0.001a | 0.019 ± 0.001c | 0.021 ± 0.001b | 0.013 ± 0.001e | 0.016 ± 0.001d | 0.016 ± 0.001d | 0.016 ± 0.001d |
7 | 0.015 ± 0.001b | 0.016 ± 0.002a | 0.013 ± 0.001c | 0.015 ± 0.001b | 0.012 ± 0.001d | 0.013 ± 0.002c | 0.013 ± 0.002c | 0.013 ± 0.002c |
8 | 0.057 ± 0.001b | 0.022 ± 0.001f | 0.035 ± 0.001d | 0.029 ± 0.001e | 0.005 ± 0.001g | 0.032 ± 0.001e | 0.074 ± 0.002a | 0.047 ± 0.002c |
9 | 0.84 ± 0.002a | 0.91 ± 0.01a | 0.72 ± 0.02b | 0.86 ± 0.04a | 0.29 ± 0.01d | 0.68 ± 0.03b | 0.62 ± 0.06dc | 0.56 ± 0.04c |
10 | 0.087 ± 0.001b | 0.032 ± 0.001f | 0.05 ± 0.01e | 0.033 ± 0.001f | 0.073 ± 0.001c | 0.062 ± 0.001d | 0.104 ± 0.003a | 0.073 ± 0.002c |
11 | 0.062 ± 0.001c | 0.036 ± 0.002d | 0.040 ± 0.001d | 0.029 ± 0.001e | 0.085 ± 0.001a | 0.060 ± 0.002c | 0.07 ± 0.01b | 0.062 ± 0.004c |
12 | 0.36 ± 0.02d | 0.29 ± 0.02e | 0.24 ± 0.02ef | 0.20 ± 0.01f | 0.858 ± 0.004a | 0.7 ± 0.1c | 0.73 ± 0.04b | 0.71 ± 0.04bc |
Tfols | 0.196 ± 0.004a | 0.19 ± 0.01b | 0.152 ± 0.004d | 0.174 ± 0.002c | 0.117 ± 0.001g | 0.126 ± 0.003f | 0.136 ± 0.003e | 0.123 ± 0.001f |
Tflavones | 0.045 ± 0.001b | 0.051 ± 0.001a | 0.039 ± 0.005d | 0.043 ± 0.001c | 0.028 ± 0.001f | 0.035 ± 0.001e | 0.035 ± 0.001e | 0.034 ± 0.001e |
Tflavn | 1.40 ± 0.02c | 1.28 ± 0.03d | 1.08 ± 0.04f | 1.2 ± 0.1e | 1.309 ± 0.003d | 1.5 ± 0.1b | 1.6 ± 0.1a | 1.5 ± 0.1b |
TPC | 1.64 ± 0.02b | 1.52 ± 0.03c | 1.3 ± 0.1e | 1.4 ± 0.1d | 1.454 ± 0.003cd | 1.7 ± 0.1b | 1.8 ± 0.1a | 1.7 ± 0.1b |
Harvest * | Nitrogen Level (ppm) | OxHLIA (IC50; µg/mL); Δt = 60 min | TBARS (EC50, μg/mL) |
---|---|---|---|
1st | 0 | 257 ± 11a | 46 ± 1b |
200 | 172 ± 6c | 30 ± 1d | |
400 | 219 ± 6b | 48 ± 2b | |
600 | 223 ± 9b | 34 ± 2c | |
2nd | 0 | 34 ± 3g | 65 ± 1a |
200 | 74 ± 4f | 28 ± 2e | |
400 | 65 ± 5e | 34 ± 1c | |
600 | 105 ± 9c | 26.5 ± 0.1f |
Cytotoxicity to Non-Tumor Cell Lines | Cytotoxicity to Tumor Cell Lines | |||||
---|---|---|---|---|---|---|
Harvest * | Nitrogen Level (ppm) | PLP2 (porcine Liver Primary Culture) | HeLa (Cervical Carcinoma) | HepG2 (Hepatocellular Carcinoma) | MCF-7 (Breast Carcinoma) | NCI-H460 (non-Small Cell Lung Cancer) |
1st | 0 | >400 | 343 ± 13a | 342 ± 19b | >400 | >400 |
200 | >400 | >400 | >400 | >400 | >400 | |
400 | >400 | >400 | >400 | >400 | >400 | |
600 | >400 | 289 ± 17b | >400 | 320 ± 13 | 319 ± 1a | |
2nd | 0 | >400 | >400 | >400 | >400 | >400 |
200 | >400 | >400 | 354 ± 12a | >400 | 317 ± 8a | |
400 | >400 | >400 | >400 | >400 | >400 | |
600 | >400 | 294 ± 14b | >400 | >400 | >400 |
Harvest * | Nitrogen Level (ppm) | MIC/MBC | Staphylococcus aureus (ATCC 11632) | Bacillus cereus (Food Isolate) | Listeria monocytogenes (NCTC 7973) | Escherichia coli (ATCC 25922) | Salmonella typhimurium (ATCC 13311) | Enterobacter cloacae (ATCC 35030) |
---|---|---|---|---|---|---|---|---|
1st | 0 | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | ||
200 | MIC | 2 | 0.5 | 2 | 0.5 | 2 | 2 | |
MBC | 4 | 1 | 4 | 1 | 4 | 4 | ||
400 | MIC | 1 | 1 | 2 | 0.5 | 2 | 1 | |
MBC | 2 | 2 | 4 | 1 | 4 | 2 | ||
600 | MIC | 1 | 1 | 2 | 0.5 | 2 | 2 | |
MBC | 2 | 2 | 4 | 1 | 4 | 4 | ||
2nd | 0 | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | ||
200 | MIC | 1 | 0.5 | 1 | 0.5 | 2 | 2 | |
MBC | 2 | 1 | 2 | 1 | 4 | 4 | ||
400 | MIC | 2 | 1 | 2 | 0.5 | 2 | 2 | |
MBC | 4 | 2 | 4 | 1 | 4 | 4 | ||
600 | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 | |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | ||
Streptomycin | MIC | 0.1 | 0.025 | 0.15 | 0.1 | 0.1 | 0.025 | |
MBC | 0.2 | 0.05 | 0.3 | 0.2 | 0.2 | 0.05 | ||
Ampicillin | MIC | 0.1 | 0.1 | 0.15 | 0.15 | 0.1 | 0.1 | |
MBC | 0.15 | 0.15 | 0.3 | 0.2 | 0.2 | 0.15 |
Harvest * | Nitrogen Level (ppm) | MIC/MFC | Aspergillus fumigatus (ATCC 9197) | Aspergillus niger (ATCC 6275) | Aspergillus versicolor (ATCC 11730) | Penicillium funiculosum (ATCC 36839 | Trichoderma viride (IAM 5061) | Penicillium verrucosum var. cyclopium (Food Isolate) |
---|---|---|---|---|---|---|---|---|
1st | 0 | MIC | 0.5 | 0.25 | 0.25 | 0.25 | 0.12 | 0.25 |
MFC | 1 | 0.5 | 0.5 | 0.5 | 0.25 | 0.5 | ||
200 | MIC | 0.5 | 0.5 | 0.25 | 0.25 | 0.25 | 0.5 | |
MFC | 1 | 1 | 0.5 | 0.5 | 0.5 | 1 | ||
400 | MIC | 0.5 | 0.5 | 0.25 | 0.25 | 0.12 | 0.25 | |
MFC | 1 | 1 | 0.5 | 0.5 | 0.25 | 0.5 | ||
600 | MIC | 0.25 | 0.25 | 0.25 | 0.25 | 0.12 | 0.5 | |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 1 | ||
2nd | 0 | MIC | 0.5 | 0.25 | 0.5 | 0.12 | 0.12 | 0.25 |
MFC | 1 | 0.5 | 1 | 0.25 | 0.25 | 0.5 | ||
200 | MIC | 1 | 0.5 | 0.5 | 0.25 | 0.12 | 0.25 | |
MFC | 2 | 1 | 1 | 0.5 | 0.25 | 0.5 | ||
400 | MIC | 0.5 | 0.5 | 0.5 | 0.12 | 0.12 | 0.25 | |
MFC | 1 | 1 | 1 | 0.25 | 0.25 | 0.5 | ||
600 | MIC | 1 | 0.5 | 0.5 | 0.25 | 0.25 | 0.25 | |
MFC | 2 | 1 | 1 | 0.5 | 0.5 | 0.5 | ||
Bifonazole | MIC | 0.15 | 0.15 | 0.1 | 0.2 | 0.15 | 0.1 | |
MFC | 0.2 | 0.2 | 0.2 | 0.25 | 0.2 | 0.2 | ||
Ketoconazole | MIC | 0.2 | 0.2 | 0.2 | 0.2 | 1 | 0.2 | |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 1.5 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules 2020, 25, 3175. https://doi.org/10.3390/molecules25143175
Petropoulos SA, Fernandes Â, Dias MI, Pereira C, Calhelha RC, Ivanov M, Sokovic MD, Ferreira ICFR, Barros L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules. 2020; 25(14):3175. https://doi.org/10.3390/molecules25143175
Chicago/Turabian StylePetropoulos, Spyridon A., Ângela Fernandes, Maria Inês Dias, Carla Pereira, Ricardo C. Calhelha, Marija Ivanov, Marina D. Sokovic, Isabel C.F.R. Ferreira, and Lillian Barros. 2020. "The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark" Molecules 25, no. 14: 3175. https://doi.org/10.3390/molecules25143175
APA StylePetropoulos, S. A., Fernandes, Â., Dias, M. I., Pereira, C., Calhelha, R. C., Ivanov, M., Sokovic, M. D., Ferreira, I. C. F. R., & Barros, L. (2020). The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules, 25(14), 3175. https://doi.org/10.3390/molecules25143175