Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization of Citrus Juices
2.2. Antioxidant Capacity and AA Content Determination in Citrus Juices
2.3. Protective Effect of Pompia and Other Citrus Juices Against ROS and Enterocytes Membrane Damage
2.4. Influence of Pompia and Lemon Juices on Metabolic Activity of Colon Cancer Cells
2.5. Antimicrobial Assays
MIC, MBC, and Antibiofilm Activity (MBIC) Evaluation of Citrus Juices
3. Materials and Methods
3.1. Fruit Samples and Juice Preparation
3.2. Chemicals and Cell Lines
3.3. Chemical Analyses
3.4. Phenolic Characterization of Citrus Juices
3.5. Analytical and Biological Determination of Antioxidant Properties of Pompia and Other Citrus Juices
3.5.1. Analytical Detection of Antioxidant Activity and AA Content
3.5.2. Electrochemical Determination of the Contribution of AA and Phenolics to Antioxidant Capacity
3.5.3. Evaluation of Protective Effect of Pompia and Other Citrus Juices Against ROS and the Enterocytes Membrane Damage
Evaluation of Potential Toxic Activity of Citrus Juices
Determination of Intracellular ROS Production and MDA Level
3.6. Evaluation of Citrus Juices Effect on Cancer Cells Metabolic Activity
3.7. Antimicrobial Activity
3.7.1. Broth Dilution Tests, MIC, and MBC
3.7.2. Anti-Biofilm Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Moreno, D.A.; García-Viguera, C. Phytochemistry and biological activity of Spanish Citrus fruits. Food Funct. 2014, 5, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Testai, L.; Calderone, V. Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Toh, J.Y.; Tan, V.M.H.; Lim, P.C.Y.; Lim, S.T.; Chong, M.F.F. Flavonoids from Fruit and Vegetables: A Focus on Cardiovascular Risk Factors. Curr. Atheroscler. Rep. 2013, 15, 368. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Barberis, A.; Spissu, Y.; Bazzu, G.; Fadda, A.; Azara, E.; Sanna, D.; Schirra, M.; Serra, P.A. Development and Characterization of an Ascorbate Oxidase-based Sensor–Biosensor System for Telemetric Detection of AA and Antioxidant Capacity in Fresh Orange Juice. Anal. Chem. 2014, 86, 8727–8734. [Google Scholar] [CrossRef]
- Sommella, E.; Pepe, G.; Pagano, F.; Tenore, G.C.; Marzocco, S.; Manfra, M.; Calabrese, G.; Aquino, R.P.; Campiglia, P. UHPLC profiling and effects on LPS-stimulated J774A.1 macrophages of flavonoids from bergamot (Citrus bergamia) juice, an underestimated waste product with high anti-inflammatory potential. J. Funct. Foods 2014, 7, 641–649. [Google Scholar] [CrossRef]
- Graziano, A.C.E.; Cardile, V.; Crascì, L.; Caggia, S.; Dugo, P.; Bonina, F.; Panico, A. Protective effects of an extract from Citrus bergamia against inflammatory injury in interferon-gamma and histamine exposed human keratinocytes. Life Sci. 2012, 90, 968–974. [Google Scholar] [CrossRef]
- Mencherini, T.; Campone, L.; Piccinelli, A.L.; García Mesa, M.; Sánchez, D.M.; Aquino, R.P.; Rastrelli, L. HPLC-PDA-MS and NMR Characterization of a Hydroalcoholic Extract of Citrus aurantium L. var. amara Peel with Antiedematogenic Activity. J. Agric. Food Chem. 2013, 61, 1686–1693. [Google Scholar] [CrossRef]
- Otang, W.M.; Afolayan, A.J. Antimicrobial and antioxidant efficacy of Citrus limon L. peel extracts used for skin diseases by Xhosa tribe of Amathole District, Eastern Cape, South Africa. South Afr. J. Bot. 2016, 102, 46–49. [Google Scholar] [CrossRef]
- Abirami, A.; Nagarani, G.; Siddhuraju, P. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci. Hum. Wellness 2014, 3, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Delle Monache, S.; Sanità, P.; Trapasso, E.; Ursino, M.R.; Dugo, P.; Russo, M.; Ferlazzo, N.; Calapai, G.; Angelucci, A.; Navarra, M. Correction: Mechanisms Underlying the Anti-Tumoral Effects of Citrus bergamia Juice. PLoS ONE 2018, 13, e0206630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlazzo, N.; Cirmi, S.; Russo, M.; Trapasso, E.; Ursino, M.R.; Lombardo, G.E.; Gangemi, S.; Calapai, G.; Navarra, M. NF-κB mediates the antiproliferative and proapoptotic effects of bergamot juice in HepG2 cells. Life Sci. 2016, 146, 81–91. [Google Scholar] [CrossRef]
- Navarra, M.; Mannucci, C.; Delbò, M.; Calapai, G. Citrus bergamia essential oil: From basic research to clinical application. Front. Pharmacol. 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, J.R.; Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Chetti, M.B.; Patil, B.S. Bioactive Compounds from Mexican Lime (Citrus aurantifolia) Juice Induce Apoptosis in Human Pancreatic Cells. J. Agric. Food Chem. 2009, 57, 10933–10942. [Google Scholar] [CrossRef]
- Camarda, I.; Mazzola, P.; Brundu, A.; Fenu, G.; Lombardo, G.; Palla, F. Un agrume nella storia della Sardegna: Citrus limon var. pompia Camarda var. nova. Quad. Bot. Amb. Appl. 2013, 24, 109–118. [Google Scholar]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Cara, P.; Ricci, D. In vitro Plant Regeneration from Callus of Citrus x monstruosa (Pompia), an Endemic Citrus of Sardinia. Nat. Prod. Commun. 2010, 5, 927–930. [Google Scholar] [CrossRef] [Green Version]
- Luro, F.; Viglietti, G.; Marchi, E.; Costantino, G.; Scarpa, G.M.; Tomi, F.; Paoli, M.; Curk, F.; Ollitrault, P. Genetic, morphological and chemical investigations reveal the genetic origin of Pompia (C. medica tuberosa Risso & Poiteau) – An old endemic Sardinian citrus fruit. Phytochemistry 2019, 168, 112083. [Google Scholar] [CrossRef] [Green Version]
- Viglietti, G.; Galla, G.; Porceddu, A.; Barcaccia, G.; Curk, F.; Luro, F.; Scarpa, G.M. Karyological Analysis and DNA Barcoding of Pompia Citron: A First Step toward the Identification of Its Relatives. Plants (Baselswitzerland) 2019, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Deiana, M.; Montoro, P.; Jerković, I.; Atzeri, A.; Marijanović, Z.; Serreli, G.; Piacente, S.; Tuberoso, C.I.G. First characterization of Pompia intrea candied fruit: The headspace chemical profile, polar extract composition and its biological activities. Food Res. Int. 2019, 120, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Manconi, M.; Manca, M.L.; Marongiu, F.; Caddeo, C.; Castangia, I.; Petretto, G.L.; Pintore, G.; Sarais, G.; D’hallewin, G.; Zaru, M.; et al. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int. J. Pharm. 2016, 506, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Manconi, M.; Manca, M.L.; Caddeo, C.; Sarais, G.; Palmieri, A.; D’Hallewin, G.; Fadda, A.M. Citrus limon Extract Loaded in Vesicular Systems for the Protection of Oral Cavity. Medicines (Baselswitzerland) 2018, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Fancello, F.; Petretto, G.L.; Zara, S.; Sanna, M.L.; Addis, R.; Maldini, M.; Foddai, M.; Rourke, J.P.; Chessa, M.; Pintore, G. Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. Lwt -Food Sci. Technol. 2016, 69, 579–585. [Google Scholar] [CrossRef]
- Dongmo, P.M.J.; Tchoumbougnang, F.; Boyom, F.F.; Sonwa, E.T.; Zollo, P.H.A.; Menut, C. Antiradical, Antioxidant Activities and Anti-Inflammatory Potential of the Essential Oils of the Varieties of Citrus Limon and Citrus Aurantifolia Growing in Cameroon. J. Asian Sci. Res. 2013, 3, 1046–1057. [Google Scholar]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Gil-Izquierdo, A.; Riquelme, M.T.; Porras, I.; Ferreres, F. Effect of the Rootstock and Interstock Grafted in Lemon Tree (Citrus limon (L.) Burm.) on the Flavonoid Content of Lemon Juice. J. Agric. Food Chem. 2004, 52, 324–331. [Google Scholar] [CrossRef]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid Composition of Citrus Juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.K.; Zill-E-Huma; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Zhao, P.; Duan, L.; Guo, L.; Dou, L.-L.; Dong, X.; Zhou, P.; Li, P.; Liu, E.-H. Chemical and biological comparison of the fruit extracts of Citrus wilsonii Tanaka and Citrus medica L. Food Chem. 2015, 173, 54–60. [Google Scholar] [CrossRef]
- Costa, R.; Dugo, P.; Navarra, M.; Raymo, V.; Dugo, G.; Mondello, L. Study on the chemical composition variability of some processed bergamot (Citrus bergamia) essential oils. Flavour Fragr. J. 2010, 25, 4–12. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D. Advantages and pitfalls of the methods for the antioxidant activity evaluation. In Advances in Food Analysis Research; Haynes, A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 65–88. [Google Scholar]
- Barroso, M.F.; de-los-Santos-Álvarez, N.; Delerue-Matos, C.; Oliveira, M.B.P.P. Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: Electrochemical (bio)sensors. Biosens. Bioelectron. 2011, 30, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberis, A.; Bazzu, G.; Calia, G.; Puggioni, G.M.G.; Rocchitta, G.G.; Migheli, R.; Schirra, M.; Desole, M.S.; Serra, P.A. New Ultralow-Cost Telemetric System for a Rapid Electrochemical Detection of Vitamin C in Fresh Orange Juice. Anal. Chem. 2010, 82, 5134–5140. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Gattuso, G.; Laganà, G.; Leuzzi, U.; Bellocco, E. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity. Food Chem. 2016, 196, 619–627. [Google Scholar] [CrossRef]
- Chamulitrat, W. Nitric Oxide Inhibited Peroxyl and Alkoxyl Radical Formation with Concomitant Protection against Oxidant Injury in Intestinal Epithelial Cells. Arch. Biochem. Biophys. 1998, 355, 206–214. [Google Scholar] [CrossRef]
- Serreli, G.; Incani, A.; Atzeri, A.; Angioni, A.; Campus, M.; Cauli, E.; Zurru, R.; Deiana, M. Antioxidant Effect of Natural Table Olives Phenolic Extract Against Oxidative Stress and Membrane Damage in Enterocyte-Like Cells. J. Food Sci. 2017, 82, 380–385. [Google Scholar] [CrossRef]
- Śliwka, L.; Wiktorska, K.; Suchocki, P.; Milczarek, M.; Mielczarek, S.; Lubelska, K.; Cierpiał, T.; Łyżwa, P.; Kiełbasiński, P.; Jaromin, A.; et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE 2016, 11, e0155772. [Google Scholar] [CrossRef] [Green Version]
- Surin, A.M.; Sharipov, R.R.; Krasil’nikova, I.A.; Boyarkin, D.P.; Lisina, O.Y.; Gorbacheva, L.R.; Avetisyan, A.V.; Pinelis, V.G. Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons. Biochem. (Mosc.) 2017, 82, 737–749. [Google Scholar] [CrossRef]
- Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Nguyen, L.H.V.; Carru, C.; Pintus, G. Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food Chem. Toxicol. 2015, 78, 10–16. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Appleby, P.N.; Key, T.J. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am. J. Clin. Nutr. 2014, 100, 394S–398S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandalari, G.; Bisignano, C.; Cirmi, S.; Navarra, M. Effectiveness of Citrus Fruits on Helicobacter pylori. Evid. -Based Complementary Altern. Med. Ecam 2017, 2017, 8379262. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.-Q.; Xu, X.-Y.; Shang, A.; Gan, R.-Y.; Wu, D.-T.; Atanasov, A.G.; Li, H.-B. Phytochemicals for the Prevention and Treatment of Gastric Cancer: Effects and Mechanisms. Int. J. Mol. Sci. 2020, 21, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visalli, G.; Ferlazzo, N.; Cirmi, S.; Campiglia, P.; Gangemi, S.; Di Pietro, A.; Calapai, G.; Navarra, M. Bergamot Juice Extract Inhibits Proliferation by Inducing Apoptosis in Human Colon Cancer Cells. Anti -Cancer Agents Med. Chem. 2014, 14, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Hindi, N.K.K.; Chabuck, Z.A.G. Antimicrobial Activity of Different Aqueous Lemon Extracts. J. Appl. Pharm. Sci. 2013, 3, 74–78. [Google Scholar]
- Boisvert, A.-A.; Cheng, M.P.; Sheppard, D.C.; Nguyen, D. Microbial Biofilms in Pulmonary and Critical Care Diseases. Ann. Am. Thorac. Soc. 2016, 13, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pozo, J.L. Biofilm-related disease. Expert Rev. Anti -Infect. Ther. 2018, 16, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Subramenium, G.A.; Vijayakumar, K.; Pandian, S.K. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 2015, 64, 879–890. [Google Scholar] [CrossRef]
- Lim, S.Y.; Teh, C.S.J.; Thong, K.L. Biofilm-Related Diseases and Omics: Global Transcriptional Profiling of Enterococcus faecium Reveals Different Gene Expression Patterns in the Biofilm and Planktonic Cells. Omics: A J. Integr. Biol. 2017, 21, 592–602. [Google Scholar] [CrossRef]
- Beikler, T.; Flemmig, T.F. Oral biofilm-associated diseases: Trends and implications for quality of life, systemic health and expenditures. Periodontology 2000 2011, 55, 87–103. [Google Scholar] [CrossRef]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV–Vis Study. Food Anal. Methods 2012, 5, 759–766. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Barberis, A.; Cefola, M.; Pace, B.; Azara, E.; Spissu, Y.; Serra, P.A.; Logrieco, A.F.; D’hallewin, G.; Fadda, A. Postharvest application of oxalic acid to preserve overall appearance and nutritional quality of fresh-cut green and purple asparagus during cold storage: A combined electrochemical and mass-spectrometry analysis approach. Postharvest Biol. Technol. 2019, 148, 158–167. [Google Scholar] [CrossRef]
- Buratti, S.; Scampicchio, M.; Giovanelli, G.; Mannino, S. A low-cost and low-tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions. Talanta 2008, 75, 312–316. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Van Camp, J.; Vissenaekens, H.; Raes, K.; Smagghe, G.; Grootaert, C. Review on the Use of Cell Cultures to Study Metabolism, Transport, and Accumulation of Flavonoids: From Mono-Cultures to Co-Culture Systems. Compr. Rev. Food Sci. Food Saf. 2015, 14, 741–754. [Google Scholar] [CrossRef]
- Serreli, G.; Melis, M.P.; Corona, G.; Deiana, M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem. Toxicol. 2019, 125, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incani, A.; Serra, G.; Atzeri, A.; Melis, M.P.; Serreli, G.; Bandino, G.; Sedda, P.; Campus, M.; Tuberoso, C.I.G.; Deiana, M. Extra virgin olive oil phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids in human intestinal cells. Food Chem. Toxicol. 2016, 90, 171–180. [Google Scholar] [CrossRef]
- Pisano, M.; Pagnan, G.; Loi, M.; Mura, M.E.; Tilocca, M.G.; Palmieri, G.; Fabbri, D.; Dettori, M.A.; Delogu, G.; Ponzoni, M.; et al. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. Cancer 2007, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Erriu, M.; Pili, F.M.G.; Tuveri, E.; Pigliacampo, D.; Scano, A.; Montaldo, C.; Piras, V.; Denotti, G.; Pilloni, A.; Garau, V.; et al. Oil Essential Mouthwashes Antibacterial Activity against Aggregatibacter actinomycetemcomitans: A Comparison between Antibiofilm and Antiplanktonic Effects. Int. J. Dent. 2013, 2013, 164267. [Google Scholar] [CrossRef] [Green Version]
- Orrù, G.; Demontis, C.; Mameli, A.; Tuveri, E.; Coni, P.; Pichiri, G.; Coghe, F.; Rosa, A.; Rossi, P.; D’hallewin, G. The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools. Front. Microbiol. 2017, 8, 2067. [Google Scholar] [CrossRef] [Green Version]
- Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical & Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2019; CLSI Supplement M100.
- Langfield, R.D.; Scarano, F.J.; Heitzman, M.E.; Kondo, M.; Hammond, G.B.; Neto, C.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 2004, 94, 279–281. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of Pompia are available upon request, please contact the corresponding author. |
Compounds | Phenolics Content (mg L−1 of Juice) | ||||
---|---|---|---|---|---|
Flavonoids | Pompia | Lemon | Orange | ||
(Hamlin) | (Sanguinello) | (Moro) | |||
Chrysoeriol 6,8-C-diglucoside (Stellarin-2) | 109.2 ± 7.4 | n.d. | n.d. | n.d. | n.d. |
Apigenin 7-O-neohesperidoside (Rhoifolin) | n.d. | 31.4 ± 11.1 | n.d. | n.d. | n.d. |
Diosmetin 6,8-diglucoside | 54.5 ± 10.6 | 6.1 ± 0.6 | n.d. | n.d. | n.d. |
Apigenin 6,8-C-diglucoside (Vicenin 2) | n.d. | 18.6 ± 1.0 | 61.8 ± 2.1 | 88.4 ± 2.9 | 41.4 ± 1.2 |
Naringenin 7-O-rutinoside (Narirutin) | n.d. | n.d. | 100.1 ± 8.7 | 131.2 ± 14.8 | 12.8 ± 0.6 |
Isorhamnetin 3-O-rutinoside | 79.4 ± 12.1 | 44.9 ± 6.7 | n.d. | n.d. | n.d. |
Apigenin 7-O-neohesperidoside 4′-glucoside (Rhoifolin 4-glucoside) | 17.5 ± 2.1 | < LOQ | n.d. | n.d. | n.d. |
Eriodictyol 7-O-rutinoside (Eriocitrin) | 11.5 ± 2.2 | 29.9 ± 4.1 | < LOQ | < LOQ | < LOQ |
Naringenin 7-O-neohesperidoside (Naringin) | n.d. | n.d. | 132.6 ± 8.4 | 125.7 ± 6.6 | 39.3 ± 2.7 |
Hesperetin 7-O-rutinoside (Hesperidin) | 7.1 ± 3.4 | 77.1 ± 6.2 | 422.8 ± 6.9 | 366.4 ± 18.6 | 182.3 ± 4.7 |
Diosmin | 52.6 ± 8.8 | 25.7 ± 1.1 | n.d. | n.d. | n.d. |
Didymin | n.d. | n.d. | 5.1 ± 0.2 | 16.2 ± 2.1 | 6.1 ± 0.2 |
Total | 331.8 | 233.7 | 722.4 | 727.9 | 281.9 |
Anthocyanins | |||||
Cyanidin 3-O-glucoside | n.d. | n.d. | n.d. | 1.8 ± 0.4 | 118.9 ± 3.2 |
Cyanidin 3-O-(6″-malonyl-glucoside) | n.d. | n.d. | n.d. | 1.0 ± 0.3 | 201.1 ± 4.9 |
Cyanidin 3-O-(6″-dioxalyl-glucoside) | n.d. | n.d. | n.d. | 0.9 ± 0.3 | 31.7 ± 3.3 |
Total | n.d. | n.d. | n.d. | 3.7 | 351.7 |
Total Phenolics | 331.8 | 233.7 | 722.4 | 731.6 | 633.6 |
(2A)–Antioxidant Capacity (mmoL Equivalents of AA L−1 of Juice) | |||||||||
Citrus Species | |||||||||
Method of Detection | Pompia | Lemon (Lisbon) | Orange (Hamlin) | Orange (Sanguinello) | Orange (Moro) | ||||
SB | Total | 4.98 b (a) | 4.59 b (a) | 4.14 c (b) | 3.89 b (c) | 3.36 b (d) | |||
AA contribution | 4.41 (a) | 4.04 (b) | 3.99 (b) | 3.31 (c) | 2.47 (d) | ||||
Phenol contribution | 0.57 (b) | 0.55 (b) | 0.15 (d) | 0.58 (b) | 0.89 (a) | ||||
DPPH | Total | 5.16 b (a) | 4.88 a (a) | 4.46 b (b) | 4.11 b (c) | 3.88 a (c) | |||
ABTS | Total | 5.39 a (a) | 5.09 a (ab) | 4.83 a (b) | 4.44 a (c) | 4.12 a (c) | |||
(2B)–AA Content (mg L−1 of Juice) | |||||||||
Method of Detection | |||||||||
Citrus Species | SB | Titrimetric | HPLC | ||||||
Pompia | 582.3 a (a) | 545.2 a (b) | 577.5 a (a) | ||||||
Lemon cv Lisbon | 528.6 b (a) | 496.0 b (a) | 507.7 b (a) | ||||||
Orange cv Hamlin | 582.0 a (a) | 565 4 a (a) | 574.4 a (a) | ||||||
Orange cv Sanguinello | 503.7 b (a) | 485.3 b (a) | 493.2 b (a) | ||||||
Orange cv Moro | 442.7 c (a) | n.d. | 431.2 c (a) |
Strain | Pompia | Lemon | Control |
---|---|---|---|
Gram negative | |||
E. coli DSM 1103 | 0.0 ± 0.0 | 0.0 ± 0.0 | Amp. 19.6 ± 0.7 |
P. aeruginosa DSM 1117 | 9.1 ± 0.8 | 7.8 ± 1.4 | Rif. 12.1 ± 0.5 |
K. pneumoniae DSM 681 | 0.0 ± 0.0 | 0.0 ± 0.0 | Amp. 9.5 ± 0.8 |
Gram positive | |||
S. aureus DSM 1104 | 10.9 ± 1.1 | 10.2 ± 0.8 | Ox. 22.6 ± 1.5 |
E. faecalis DSM 2570 | 11.2 ± 1.6 | 11.4 ± 2.2 | Amp. 23.8 ± 0.9 |
Strain | Lemon | Pompia | ||||
---|---|---|---|---|---|---|
MIC | MBC | MBIC | MIC | MBC | MBIC | |
mg mL−1 | mg mL−1 | |||||
P. aeruginosa DSM 1117 | 4 | >4 | 4 | 4 | >4 | 2 |
S. aureus DSM 1104 | 2 | >4 | 2 | 2 | >4 | 1 |
E. faecalis DSM 2570 | 4 | >4 | 4 | 4 | >4 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barberis, A.; Deiana, M.; Spissu, Y.; Azara, E.; Fadda, A.; Serra, P.A.; D’hallewin, G.; Pisano, M.; Serreli, G.; Orrù, G.; et al. Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice. Molecules 2020, 25, 3186. https://doi.org/10.3390/molecules25143186
Barberis A, Deiana M, Spissu Y, Azara E, Fadda A, Serra PA, D’hallewin G, Pisano M, Serreli G, Orrù G, et al. Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice. Molecules. 2020; 25(14):3186. https://doi.org/10.3390/molecules25143186
Chicago/Turabian StyleBarberis, Antonio, Monica Deiana, Ylenia Spissu, Emanuela Azara, Angela Fadda, Pier Andrea Serra, Guy D’hallewin, Marina Pisano, Gabriele Serreli, Germano Orrù, and et al. 2020. "Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice" Molecules 25, no. 14: 3186. https://doi.org/10.3390/molecules25143186
APA StyleBarberis, A., Deiana, M., Spissu, Y., Azara, E., Fadda, A., Serra, P. A., D’hallewin, G., Pisano, M., Serreli, G., Orrù, G., Scano, A., Steri, D., & Sanjust, E. (2020). Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice. Molecules, 25(14), 3186. https://doi.org/10.3390/molecules25143186