Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
2.2.1. Antifungal Activities
2.2.2. Antitubercular Activity
2.2.3. Antiproliferative and Cytotoxicity Activity
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis
3.2.1. General Procedure for the Synthesis of Chalcones (17–31)
3.2.2. General Procedure for the Synthesis of Dihydropyrazoles (17–31)
3.3. Biological Activity Studies
3.3.1. Antifungal Activity
3.3.2. Antitubercular Activity
3.3.3. Antiproliferative and Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yazdan, K.S.; Sagar, G.V.; Shaik, B.A. Biological and synthetic potentiality of chalcones: A review. J. Chem. Pharm. Res. 2015, 7, 829–842. [Google Scholar]
- Habib, S.I. Chemical and Biological Potential of chalcones as a source of drug: A review. Int. J. Pharm. Pharm. Res. 2018, 22, 105–119. [Google Scholar]
- Hasan, S.A.; Elias, A.N.; Farhan, M.S. Synthesis, characterization and antimicrobial evaluation of a series of chalcone derivatives. Der Pharma. Chem. 2015, 7, 39–42. [Google Scholar]
- Kumbhar, D.D.; Waghmare, B.Y.; Pathade, G.R.; Pardeshi, S.K. Synthesis and evaluation of chalcones as antifungal agents. Der Pharma. Lett. 2014, 6, 224–229. [Google Scholar]
- Jaiswal, P.; Pathak, D.P.; Bansal, H.; Agarwal, U. Chalcone and their heterocyclic analogue: A review article. J. Chem. Pharm. Res. 2018, 10, 160–173. [Google Scholar]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.Z.; Nguyen, M.A.; Zingales, S.K. Design, synthesis and evaluation of (2-(Pyridinyl)methylene)-1-tetralone chalcones for Anticancer and Antimicrobial Activity. Med. Chem. 2018, 14, 333–343. [Google Scholar] [CrossRef]
- Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Velez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem. 2013, 67, 252–262. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B 2019, 9, 335–350. [Google Scholar] [CrossRef]
- Martinez, Y.A.V.; Osorio, M.E.; San Martin, D.A.; Carvajal, M.A.; Vergera, A.P.; Sanchez, E.; Raimondi, M.; Zacchino, S.A.; Mascayano, C.; Torrent, C.; et al. Antimicrobial, Anti-Inflammatory and Antioxidant Activities of Polyoxygenated Chalcones. J. Braz. Chem. Soc. 2019, 30, 286–304. [Google Scholar]
- Karthikeyan, C.; Moorthy, N.S.H.N.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Pat. Anti-Cancer Drug Discov. 2015, 10, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Czuba, Z.; Mazur, B.; Paradysz, A.; Krol, W. Chalcones and Dihydrochalcones Augment TRAIL-Mediated Apoptosis in Prostate Cancer Cells. Molecules 2010, 15, 5336–5353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavanya, G.; Mallikarjunareddy, L.; Padmavathi, V.; Padmaja, A. Synthesis and antimicrobial activity of (1,4-phenylene)bis(arylsulfonylpyrazoles and isoxazoles). Eur. J. Med. Chem. 2014, 73, 187–194. [Google Scholar] [CrossRef]
- Ardiansah, B. Chalcones bearing N, O and S-heterocycle: Recent notes on their biological significance. J. Appl. Pharm. Sci. 2019, 9, 117–129. [Google Scholar]
- Abdelhamid, A.O.; EI Sayed, I.E.; Zaki, Y.H.; Hussein, A.M.; Mangoud, M.M.; Hosny, M.A. Utility of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide in the synthesis of heterocyclic compounds with antimicrobial activity. BMC Chem. 2019, 13, 48. [Google Scholar] [CrossRef]
- Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules 2013, 18, 2683–2711. [Google Scholar] [CrossRef]
- Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Der Pharm. 2011, 344, 514–522. [Google Scholar] [CrossRef]
- Gawad, N.M.; Georgey, H.H.; Ibrahim, N.A.; Amin, N.H.; Abdelsalam, R.M. Synthesis of novel pyrazole and dihydropyrazoles derivatives as potential anti-inflammatory and analgesic agents. Arch. Pharmacal Res. 2016, 52, 14490–14493. [Google Scholar] [CrossRef]
- Alex, J.M.; Kumar, R. 4,5-Dihydro-1H-pyrazole: An indispensable scaffold. J. Enzym. Inhib. Med. Chem. 2014, 29, 427–442. [Google Scholar] [CrossRef]
- Kishor, P.; Ramana, V.; Shaikh, A.B. Antitubercular Evaluation of Isoxazolyl Chalcones. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 730–735. [Google Scholar]
- Shaikh, A.B.; Lohitha, K.; Vani, S.; Basu, P.S.; Shaik, A.; Supraja, K.; Harish, S.H. Synthesis and screening of novel lipophilic diarylpropeones as prospective antitubercular, antibacterial and antifungal agents. Biointerface Res. Appl. Chem. 2019, 9, 3912–3918. [Google Scholar]
- Shaikh, A.B.; Prasad, Y.R.; Shaik, S. Design, Facile Synthesis, Characterization and Computational Evaluation of Novel Isobutylchalcones as Cytotoxic Agents: Part-A. FABAD J. Pharm. Sci. 2015, 40, 7–22. [Google Scholar]
- Kancharlapalli, V.R.; Shaikh, A.B.; Palleapati, K. Antitubercular evaluation of isoxazole appended 1-carboxamido-4,5-dihydro-1H-pyrazoles. J. Res. Pharm. 2019, 23, 156–163. [Google Scholar]
- Lokesh, B.V.S.; Prasad, Y.R.; Shaik, A.B. Synthesis, Biological evaluation and molecular docking studies of new pyrazolines as an antitubercular and cytotoxic agents. Infect. Disord. -Drug Targets Former. Curr. Drug Targets-Infect. Disord. 2019, 19, 310–321. [Google Scholar] [CrossRef]
- Shaik, A.B.; Yejella, R.P.; Shaik, S. Synthesis, Antimicrobial, and Computational Evaluation of Novel Isobutylchalcones as Antimicrobial Agents. Int. J. Med. Chem. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lokesh, B.V.S.; Prasad, Y.R.; Shaik, A.B. Novel pyrimidine derivatives from 2,5-dichloro-3-acetylthienyl chalcones as antifungal, antitubercular and cytotoxic agents: Design, synthesis, biological activity and docking study. Asian J. Chem. 2019, 19, 310–321. [Google Scholar]
- Shaikh, A.B.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules 2020, 25, 1047. [Google Scholar] [CrossRef] [Green Version]
- Ocampo, J.A.; Carrillo, R.; Kae, H.; Ashburn, B.O. Synthesis and antimicrobial evaluation of a series of chlorinated chalcone derivatives. Int. J. Pharm. 2018, 13, 113–119. [Google Scholar]
- Montoya, A.; Quiroga, J.; Abonia, R.; Derita, M.; Sortino, M.; Ornelas, A.; Zacchino, S.; Insuasty, B. Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules 2016, 21, 969. [Google Scholar] [CrossRef] [Green Version]
- Bano, S.; Alam, M.S.; Javed, K.; Dudeja, M.; Das, A.K.; Dhulap, A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur. J. Med. Chem. 2015, 95, 96–103. [Google Scholar] [CrossRef]
- Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem. 2016, 112, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.J.; Saini, V. Design and synthesis of 3-(4-aminophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide/carbothioamide analogues as antitubercular agents. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Ashburn, B.O. Computational Analysis of a Series of Chlorinated Chalcone Derivatives. Comput. Chem. 2019, 7, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 173, 117–153. [Google Scholar] [CrossRef]
- Smith, B.R.; Eastman, C.M.; Njardarson, J.T. Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. J. Med. Chem. 2014, 57, 9764–9773. [Google Scholar] [CrossRef]
- Mueller, G.; Nkusi, G.; Schoeler, H.F. Natural Organohalogens in Sediments. J. Prakt. Chem./Chem. -Ztg. 1996, 338, 23–29. [Google Scholar] [CrossRef]
- Klaus, N. Influence of chlorine substituents on biological activity of chemicals: A review. Pest Manag. Sci. 2000, 56, 3–21. [Google Scholar]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56, 1363–1388. [Google Scholar] [CrossRef]
- Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules 2017, 22, 1397. [Google Scholar] [CrossRef]
- Edis, Z.; Haj Bloukh, S.; Abu Sara, H.; Bhakhoa, H.; Rhyman, L.; Ramasami, P. “Smart” triiodide compounds: Does halogen bonding influence antimicrobial activities? Pathogens 2019, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloukh, S.H.; Edis, Z. Halogen bonding in Crystal structure of bis(1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium triiodide, C16H32CsI3O8. Z. Krist. -New Cryst. Struct. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Bloukh, S.H.; Edis, Z. Structure and Antimicrobial properties of bis(1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium pentaiodide, C16H32CsI5O8. Z. Krist. -New Cryst. Struct. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Thirunarayanan, G.; Surya, S.; Srinivasan, S.; Vanangamudi, G.; Sathiyendiran, V. Synthesis and insect antifeedant activities of some substituted styryl 3,4-dichlorophenyl ketones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Buu-Hoi, N.P.; Xuong, N.D.; Rips, R. New Fluorine-containing Aromatics as Potential Carcinostats. J. Org. Chem. 1957, 22, 193–197. [Google Scholar] [CrossRef]
- Hicks, L.D.; Fry, A.J.; Kurzweil, V.C. Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): A new approach to substituent effects in organic electrochemistry. Electrochim. Acta 2004, 50, 1039–1047. [Google Scholar] [CrossRef]
- Aeppli, L.; Bernauer, K.; Schneider, F.; Strub, K.; Oberhänsli, W.E.; Pfoertner, K.-H. Synthesen und pharmakologische Eigenschaften von 2,2-Dialkyl-5-aryl-3-pyridylpyrrolidinen. Helv. Chim. Acta 1980, 63, 630–644. [Google Scholar] [CrossRef]
- Anandham, R.; Jadav, S.S.; Ala, V.B.; Ahsan, M.J.; Bollikolla, H.B. Synthesis of new C-dimethylated chalcones as potent antitubercular agents. Med. Chem. Res. 2018, 27, 1690–1704. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 2–31 are available from the authors. |
Compound | A. niger | C. tropicalis | Compound | A. niger | C. tropicalis |
---|---|---|---|---|---|
2 | 109.9 | 109.9 | 17 | 41.96 | 41.96 |
3 | 54.21 | 54.21 | 18 | 20.76 | 41.53 |
4 | 27.10 | 54.21 | 19 | 20.76 | 41.53 |
5 | 25.67 | 51.34 | 20 | 19.91 | 39.82 |
6 | 25.67 | 51.34 | 21 | 19.91 | 39.82 |
7 | 25.54 | 51.09 | 22 | 19.83 | 19.83 |
8 | 23.11 | 46.23 | 23 | 18.34 | 36.68 |
9 | 11.58 | 24 | 9.18 | 9.18 | |
10 | 23.11 | 180.62 | 25 | 19.45 | 19.45 |
11 | 28.87 | 28.87 | 26 | 21.72 | 21.72 |
12 | 28.87 | 14.43 | 27 | 21.72 | 21.72 |
13 | 57.75 | 112.8 | 28 | 21.72 | 21.72 |
14 | 234.97 | 117.48 | 29 | 11.19 | 11.19 |
15 | 60.37 | 60.37 | 30 | 44.91 | 44.91 |
16 | 14.12 | 14.12 | 31 | 5.35 | 5.35 |
Fluconazole | 26.11 | 19.58 | Fluconazole | 26.11 | 19.58 |
Compound | M. tuberculosis H37Rv | Compound | M. tuberculosis H37Rv |
---|---|---|---|
2 | 343.44 | 17 | 262.26 |
3 | 84.70 | 18 | 32.44 |
4 | 84.70 | 19 | 32.44 |
5 | 80.23 | 20 | 31.11 |
6 | 20.05 | 21 | 15.55 |
7 | 9.96 | 22 | 3.96 |
8 | 18.06 | 23 | 7.15 |
9 | 9.03 | 24 | 3.67 |
10 | 72.24 | 25 | 60.78 |
11 | 45.12 | 26 | 67.88 |
12 | 22.56 | 27 | 67.88 |
13 | 45.12 | 28 | 67.88 |
14 | 46.99 | 29 | 17.49 |
15 | 47.16 | 30 | 70.17 |
16 | 22.07 | 31 | 8.35 |
Pyrazinamide | 25.34 | 25.34 |
Compound | DU-145 | Compound | DU-145 |
---|---|---|---|
2 | 432 ± 2 | 17 | 351 ± 2 |
3 | 176 ± 2 | 18 | 119 ± 2 |
4 | 393 ± 2 | 19 | 327 ± 2 |
5 | 147 ± 2 | 20 | 149 ± 2 |
6 | 141 ± 2 | 21 | 134 ± 2 |
7 | 31 ± 2 | 22 | 262 ± 2 |
8 | 254 ± 2 | 23 | 206 ± 2 |
9 | 292 ± 1 | 24 | 257 ± 2 |
10 | 138 ± 2 | 25 | 131 ± 2 |
11 | 353 ± 2 | 26 | 271 ± 2 |
12 | 256 ± 2 | 27 | 211 ± 2 |
13 | 209 ± 2 | 28 | 173 ± 2 |
14 | 206 ± 2 | 29 | 162 ± 2 |
15 | 94 ± 2 | 30 | 84 ± 2 |
16 | 17 ± 1 | 31 | 32 ± 1 |
Methotrexate | 11 ± 1 |
Compound | L02 | Compound | L02 |
---|---|---|---|
2 | >50 | 17 | >75 |
3 | >50 | 18 | >75 |
4 | >50 | 19 | >75 |
5 | >50 | 20 | >75 |
6 | >50 | 21 | >75 |
7 | >50 | 22 | >75 |
8 | >50 | 23 | >75 |
9 | >50 | 24 | >75 |
10 | >50 | 25 | >75 |
11 | >50 | 26 | >75 |
12 | >50 | 27 | >75 |
13 | >50 | 28 | >75 |
14 | >50 | 29 | >75 |
15 | >50 | 30 | >75 |
16 | >50 | 31 | >75 |
Methotrexate | >75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Edis, Z.; Tangirala, N.R.; Shahanaaz, S.; Rahman, M.M. Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules 2020, 25, 3188. https://doi.org/10.3390/molecules25143188
Shaik AB, Bhandare RR, Nissankararao S, Edis Z, Tangirala NR, Shahanaaz S, Rahman MM. Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules. 2020; 25(14):3188. https://doi.org/10.3390/molecules25143188
Chicago/Turabian StyleShaik, Afzal B., Richie R. Bhandare, Srinath Nissankararao, Zehra Edis, N. Ravikiran Tangirala, Shaik Shahanaaz, and M. Mukhlesur Rahman. 2020. "Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities" Molecules 25, no. 14: 3188. https://doi.org/10.3390/molecules25143188
APA StyleShaik, A. B., Bhandare, R. R., Nissankararao, S., Edis, Z., Tangirala, N. R., Shahanaaz, S., & Rahman, M. M. (2020). Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules, 25(14), 3188. https://doi.org/10.3390/molecules25143188