Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Desorption Solvent for Coating Evaluation
2.2. Comparison of Extraction Efficiency of Various Coatings at pH 7.4
2.3. pH Effect on the Extraction Performance of Different Coatings
3. Materials and Methods
3.1. Chemicals, Materials and Solutions
3.2. Preparation of TFME Coatings
3.3. TFME Procedure for Coating Evaluation
3.4. Liquid Chromatography and Tandem Mass Spectrometry Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bruheim, I.; Liu, X.; Pawliszyn, J. Thin-film microextraction. Anal. Chem. 2003, 75, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, E.; Pawliszyn, J. Micelle assisted thin-film solid phase microextraction: A new approach for determination of quaternary ammonium compounds in environmental samples. Anal. Chem. 2014, 86, 8916–8921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piri-Moghadam, H.; Gionfriddo, E.; Grandy, J.; Alam, Md.N.; Pawliszyn, J. Development and validation of eco-friendly strategies based on thin film microextraction for water analysis. J. Chromatogr. A 2018, 1579, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Olcer, Y.A.; Tascon, M.; Eroglu, A.E.; Boyaci, E. Thin film microextraction: Towards faster and more sensitive microextraction. Trends Anal. Chem. 2019, 113, 93–101. [Google Scholar] [CrossRef]
- Souza Silva, E.A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends Anal. Chem. 2013, 43, 24–36. [Google Scholar] [CrossRef]
- Cudjoe, E.; Vuckovic, D.; Pawliszyn, J. Investigation of the Effect of the Extraction Phase Geometry on the Performance of Automated Solid-Phase Microextraction. Anal. Chem. 2009, 81, 4226–4232. [Google Scholar] [CrossRef]
- Jiang, R.; Pawliszyn, J. Thin-film microextraction offers another geometry for solid-phase microextraction. Trends Anal. Chem. 2012, 39, 245–253. [Google Scholar] [CrossRef]
- Mimaghi, F.S.; Chen, Y.; Sidisky, L.M.; Pawliszyn, J. Optimization of the coating procedure for a high-throughput 96-blade solid-phase microextraction system coupled with LC-MS/MS for analysis of complex samples. Anal. Chem. 2011, 83, 6018–6025. [Google Scholar]
- Vuckovic, D. High-throughput solid-phase microextraction in multi-well-plate format. Trends Anal. Chem. 2013, 45, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Boyaci, E.; Gorynski, K.; Viteri, R.; Pawliszyn, J. A study of thin film solid phase microextraction methods for analysis of fluorinated benzonic acids in seawater. J. Chromatogr. A 2016, 1436, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimaghi, F.S.; Mousavi, F.; Rocha, S.M.; Pawliszyn, J. Automated determination of phenolic compounds in wine, berry, and grape samples using 96-blade solid-phase microextraction system coupled with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1276, 12–19. [Google Scholar]
- Mimaghi, F.S.; Pawliszyn, J. Development of coatings for automated 96-blade solid-phase microextraction-liquid chromatography-tandem mass spectrometry system, capable of extracting a wide polarity range of analytes from biological fluids. J. Chromatogr. A 2012, 1261, 91–98. [Google Scholar]
- Mousavi, F.; Bojko, B.; Pawliszyn, J. Development of high throughput 96-blade solid phase microextraction-liquid chromatography-mass spectrometry protocol for metabolomics. Anal. Chim. Acta 2015, 892, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Latorre, C.; Barciela-Garcia, J.; Garcia-Martin, S.; Pena-Crecente, R.M.; Otarola-Jimenez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef]
- de Toffoli, A.L.; Maciel, E.V.S.; Fumes, B.H.; Mauro, F. The role of graphene-based sorbents in modern sample preparation techniques. J Sep. Sci. 2018, 41, 288–302. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.B.; Jiang, G.B. Application of graphene in analytical sample preparation. Trends Anal. Chem. 2012, 37, 1–11. [Google Scholar] [CrossRef]
- Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a new sorbent in analytical chemistry. Trends Anal. Chem. 2013, 51, 33–43. [Google Scholar] [CrossRef]
- Kueseng, P.; Pawliszyn, J. Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water. J. Chromatogr. A 2013, 1317, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shi, J.B.; Zeng, L.X.; Wang, T.; Cai, Y.Q.; Jiang, G.B. Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. J. Chromatogr. A 2011, 1218, 197–204. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.B.; Sun, J.T.; Wang, T.; Zeng, L.X.; Jiang, G.B. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew. Chem. Int. Ed. 2011, 50, 5913–5917. [Google Scholar] [CrossRef]
- Vuckovic, D.; Pawliszyn, J. Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry. Anal. Chem. 2011, 83, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F.; Gunatilleka, A.D.; Sethuraman, R. Contributions of theory to method development in solid-phase extraction. J. Chromatogr. A 2000, 885, 17–39. [Google Scholar] [CrossRef]
- Ma, J.C.; Dougherty, D.A. The cation-π interaction. Chem. Rev. 1997, 97, 1303–1324. [Google Scholar] [CrossRef]
- Roman, T.; Dino, W.A.; Nakanishi, H.; Kasai, H. Amino acid adsorption on single-walled carbon nanotubes. Eur. Phys. J. D 2006, 38, 117–120. [Google Scholar] [CrossRef]
- Panari, R.G.; Chougale, R.B.; Nandibewoor, S.T. Oxidation of mandelic acid by alkaline postassium permanganate, A kinetic study. J. Phys. Org. Chem. 1998, 11, 448–454. [Google Scholar] [CrossRef]
- Cui, D.W.; Qian, X.H.; Liu, F.Y.; Zhang, R. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org. Lett. 2004, 6, 2757–2760. [Google Scholar] [CrossRef]
- Skwierczynski, R.D.; Connors, K.A. Demethylation kinetics of aspartame and L-phenylalanine methyl ester in aqueous solution. Pharm. Res. 1993, 10, 1174–1180. [Google Scholar] [CrossRef]
- Ahmad, I.; Fasihullah, Q.; Izhar, A.N.; Ansari, A.; Ali, Q.N.M. Photolysis of riboflavin in aqueous solution: A kinetic study. Int. J. Pharm. 2004, 280, 199–208. [Google Scholar] [CrossRef]
- Dominguez, J.R.; Gonzalez, T.; Palo, P.; Cuerda-Correa, E.M. Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin: Influence of pH and presence of other drugs. Desalination 2011, 269, 231–238. [Google Scholar] [CrossRef]
- Li, H.; Helm, P.A.; Paterson, G.; Metcalfe, C.D. The effect of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere 2011, 83, 271–280. [Google Scholar] [CrossRef]
- Pei, Z.G.; Li, L.Y.; Sun, L.X.; Zhang, S.Z.; Shan, X.Q.; Yang, S.; Wen, B. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 2013, 51, 156–163. [Google Scholar] [CrossRef]
- Yang, S.T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.F.; Wang, H.F. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2011, 359, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Tuytten, R.; Lemiere, F.; Dongen, W.V.; Witters, E.; Esmans, E.L.; Newton, R.P.; Dudley, E. Development of an on-line SPE-LC-ESI-MS method for urinary nucleosides: Hyphenation of aprotic boronic acid chromatography with hydrophilic interaction LC-ESI-MS. Anal. Chem. 2008, 80, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-W.; Murtada, K.; Reyes-Garcés, N.; Pawliszyn, J. Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction. Molecules 2020, 25, 3448. https://doi.org/10.3390/molecules25153448
Liu J-W, Murtada K, Reyes-Garcés N, Pawliszyn J. Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction. Molecules. 2020; 25(15):3448. https://doi.org/10.3390/molecules25153448
Chicago/Turabian StyleLiu, Jia-Wei, Khaled Murtada, Nathaly Reyes-Garcés, and Janusz Pawliszyn. 2020. "Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction" Molecules 25, no. 15: 3448. https://doi.org/10.3390/molecules25153448
APA StyleLiu, J. -W., Murtada, K., Reyes-Garcés, N., & Pawliszyn, J. (2020). Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction. Molecules, 25(15), 3448. https://doi.org/10.3390/molecules25153448