A Walk through Recent Nitro Chemistry Advances
Abstract
:1. Introduction
2. Nitration
3. Reactivity and Application
4. Conclusions
Funding
Conflicts of Interest
References
- Nishiwaki, N. Synthesis of Nitroso, Nitro, and Related Compounds. In Comprehensive Organic Synthesis, 2nd ed.; Molander, G.A., Knochel, P., Eds.; Elsevier: Oxford, UK, 2014; Volume 6, pp. 100–130. [Google Scholar]
- Yan, G.; Yang, M. Recent Advances in the Synthesis of Aromatic Nitro Compounds. Org. Biomol. Chem. 2013, 11, 2554–2566. [Google Scholar] [CrossRef]
- Smith, K.; Musson, A.; DeBoos, G.A. A Novel Method for the Nitration of Simple Aromatic Compounds. J. Org. Chem. 1998, 63, 8448–8454. [Google Scholar] [CrossRef]
- Houas, M.; Kogelbauer, A.; Prins, R. An NMR Study of the Nitration of Toluene over Zeolites by HNO3–Ac2O. Phys. Chem. Chem. Phys. 2001, 3, 5067–5075. [Google Scholar] [CrossRef]
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Advances in the Application of N2O4/NO2 in Organic Reactions. Tetrahedron 2010, 66, 9077–9106. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Mathew, T. ipso-Nitration of Arenes. Angew. Chem. Int. Ed. 2010, 49, 1726–1728. [Google Scholar] [CrossRef]
- Wu, X.-F.; Schranck, J.; Neumann, H.; Beller, M. Convenient and Mild Synthesis of Nitroarenes by Metal-Free Nitration of Arylboronic Acids. Chem. Commun. 2011, 47, 12462–12463. [Google Scholar] [CrossRef] [PubMed]
- Fors, B.P.; Buchwald, S.L. Pd-catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics. J. Am. Chem. Soc. 2009, 131, 12898–12899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.-R.; Fan, Z.; Zhang, A. Recent Advances in Transition Metal-Catalyzed C(sp2)-H Nitration. Org. Biomol. Chem. 2019, 17, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Makosza, M. Reactions of Nucleophiles with Nitroarenes: Multifacial and Versatile Electrophiles. Chem. Eur. J. 2014, 20, 5536–5545. [Google Scholar] [CrossRef]
- Makosza, M. How Does Nucleophilic Aromatic Substitution in Nitroarenes Really Proceed: General Mechanism. Synthesis 2017, 49, 3247–3254. [Google Scholar] [CrossRef]
- Hao, F.; Nishiwaki, N. Recent Progress in Nitro-promoted Direct Functionalization of Pyridones and Quinolones. Molecules 2020, 25, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.-F.; An, Y.; Jiao, Z.-Y.; Shi, Z.-B.; Zhang, F.-M. Comprehension of the α-Arylation of Nitroalkanes. Curr. Org. Chem. 2019, 23, 1560–1580. [Google Scholar] [CrossRef]
- Nishiwaki, N. Development of a Pseudo-Intramolecular Process. Synthesis 2016, 48, 1286–1300. [Google Scholar] [CrossRef]
- Aksenov, N.A.; Aksenov, A.V.; Ovchanov, S.N.; Aksenov, D.A.; Rubin, M. Electrophilically Activated Nitroalkanes in Reactions with Carbon Based Nucleophiles. Front. Chem. 2020, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Chen, F.-E. Asymmetric Catalysis in Direct Nitromethane-Free Henry Reactions. RSC Adv. 2020, 10, 2313–2326. [Google Scholar] [CrossRef] [Green Version]
- Ballini, R.; Gabrielli, S.; Palmieri, A.; Petrini, M. Nitroalkanes as Key Compounds for the Synthesis of Amino Derivatives. Curr. Org. Chem. 2011, 15, 1482–1506. [Google Scholar] [CrossRef]
- Noble, A.; Anderson, J.C. Nitro-Mannich Reaction. Chem. Rev. 2013, 113, 2887–2939. [Google Scholar] [CrossRef]
- Aitken, L.S.; Arezki, N.R.; Dell’Isola, A.; Cobb, A.J.A. Asymmetric Organocatalysis and the Nitro Group Functionality. Synthesis 2013, 45, 2627–2648. [Google Scholar]
- Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R.P.; Tejero, T.; Merino, P. Asymmetric organocatalytic synthesis of γ-nitrocarbonyl compounds through Michael and Domino reactions. Tetrahedron Asymmetry 2010, 21, 2561–2601. [Google Scholar] [CrossRef]
- Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E. Nitroalkenes in the synthesis of carbocyclic compounds. RSC Adv. 2014, 4, 31261–31299. [Google Scholar] [CrossRef]
- Ballini, R.; Araújo, N.; Gil, M.V.; Román, E.; Serrano, J.A. Conjugated nitrodienes. Synthesis and reactivity. Chem. Rev. 2013, 113, 3493–3515. [Google Scholar] [CrossRef] [PubMed]
- Nakaike, Y.; Asahara, H.; Nishiwaki, N. Construction of Push-Pull Systems Using β-Formyl-β-nitroenamine. Russ. Chem. Bull. Int. Ed. 2016, 65, 2129–2142. [Google Scholar] [CrossRef]
- Sukhorukov, A.Y.; Sukhanova, A.A.; Zlotin, S.G. Stereoselective Reactions of Nitro Compounds in the Synthesis of Natural Compound Analogs and Active Pharmaceutical Ingredients. Tetrahedron 2016, 72, 6191–6281. [Google Scholar] [CrossRef]
- Jaeger, V.; Viehe, H.G. Heterosubstituted Acetylenes. XXI. Nitroacetylenes. Angew. Chem. Int. Ed. 1969, 8, 273–274. [Google Scholar]
- Windler, G.K.; Pagoria, P.F.; Vollhardt, K.P.C. Nitroalkynes: A Unique Class of Energetic Materials. Synthesis 2014, 46, 2383–2412. [Google Scholar] [CrossRef]
- Tabolin, A.A.; Sukhorukov, A.Y.; Ioffe, S.L. α-Electrophilic Reactivity of Nitronates. Chem. Rec. 2018, 18, 1489–1500. [Google Scholar] [CrossRef]
- Sukhorukov, A.Y. C-H reactivity of the α-Position in Nitrones and Nitronates. Adv. Synth. Catal. 2020, 362, 724–754. [Google Scholar] [CrossRef]
- Tabolin, A.A.; Sukhorukov, A.Y.; Ioffe, S.L.; Dilman, A.D. Recent Advances in the Synthesis and Chemistry of Nitronates. Synthesis 2017, 49, 3255–3268. [Google Scholar] [CrossRef]
- Baiazitov, R.Y.; Denmark, S.E. Tandem [4+2]/[3+2] Cycloadditions. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses; Nishiwaki, N., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 471–550. [Google Scholar]
- Ballini, R.; Palmieri, A. Formation of Carbon-Carbon Double Bonds: Recent Developments via Nitrous Acid Elimination (NAE) from Aliphatic Nitro Compounds. Adv. Synth. Catal. 2019, 361, 5070–5097. [Google Scholar] [CrossRef]
- Mukaijo, Y.; Yokoyama, S.; Nishiwaki, N. Comparison of Substituting Ability of Nitronate versus Enolate for Direct Substitution of a Nitro Group. Molecules 2020, 25, 2048. [Google Scholar] [CrossRef]
- Asahara, H.; Sofue, A.; Kuroda, Y.; Nishiwaki, N. Alkynylation and Cyanation of Alkenes Using Diverse Properties of a Nitro Group. J. Org. Chem. 2018, 83, 13691–13699. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Palladium-Catalyzed Cross-Coupling of Nitroarenes. Angew. Chem. Int. Ed. 2017, 56, 15802–15804. [Google Scholar] [CrossRef] [PubMed]
- Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Comppounds to Amines. Org. Process Res. Dev. 2018, 22, 430–445. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene Reduction: A Trusted Model Reaction to Test Nanoparticle Catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef] [PubMed]
- Nef, J.U. Ueber die Constitution der Salze der Nitroparaffine. Justus Liebigs Ann. Chem. 1894, 280, 263–291. [Google Scholar] [CrossRef]
- Ballini, R.; Petrini, M. The Nitro to Carbonyl Conversion (Nef Reaction): New Perspectives for a Classical Transformation. Adv. Synth. Catal. 2015, 357, 2371–2402. [Google Scholar] [CrossRef]
- Rocar, L.; Goujon, A.; Hudhomme, P. Nitro-Perylenediimide: An Emerging Buiding Block for the Synthesis of Functional Organic Materials. Molecules 2020, 25, 1402. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Elias, A.J. The Explosive Chemistry of Nitrogen. Resonance 2019, 1253–1271. [Google Scholar] [CrossRef]
- Parry, R.; Nishino, S.; Spain, J. Naturally-Occurring Nitro Compounds. Nat. Prod. Rep. 2011, 28, 152–167. [Google Scholar] [CrossRef]
- Nepali, K.; Lee, H.-Y.; Liou, J.-P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [PubMed]
- Patterson, S.; Wyllie, S. Nitro Drugs for the Treatment of Trypanosomatid Diseases: Past, Present, and Future Prospects. Trends Parasitol. 2014, 30, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiwaki, N. A Walk through Recent Nitro Chemistry Advances. Molecules 2020, 25, 3680. https://doi.org/10.3390/molecules25163680
Nishiwaki N. A Walk through Recent Nitro Chemistry Advances. Molecules. 2020; 25(16):3680. https://doi.org/10.3390/molecules25163680
Chicago/Turabian StyleNishiwaki, Nagatoshi. 2020. "A Walk through Recent Nitro Chemistry Advances" Molecules 25, no. 16: 3680. https://doi.org/10.3390/molecules25163680
APA StyleNishiwaki, N. (2020). A Walk through Recent Nitro Chemistry Advances. Molecules, 25(16), 3680. https://doi.org/10.3390/molecules25163680