Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximal Analysis
2.2. Phenolic Content and Characterization
2.3. Total Antioxidant Capacity (TAC)
2.4. Angiotensin Converting Enzyme (ACE)
2.5. Digestible Starch (DS)
2.6. Scanning Electron Microscopy (SEM)
2.7. Colorimetry
2.8. Sensory Analysis
2.9. Simultaneous Optimization by the Desirability Function Approach
3. Materials and Methods
3.1. Chemicals
3.2. Grain Sample
3.3. Snack Formulation
3.4. Experimental Design and Data Modeling by Response Surface Methodology
3.5. Proximal Characterization
3.6. Water Activity (aw)
3.7. Phenolic Characterization and Content
3.7.1. Total Phenolic Content (TPC)
3.7.2. Characterization of Free Phenolic Profile
3.8. Total Antioxidant Capacity (TAC)
3.8.1. Extracts Preparation
3.8.2. DPPH (Classical and Quencher) Assays
3.8.3. ORAC Assay
3.8.4. ABTS (Classical and Q-Versions) Assay
3.9. Angiotensin I-converting Enzyme (ACE) Inhibitory Activity
3.10. Determination of Available Starch (BS)
3.11. Scanning Electron Microscopy (SEM)
3.12. Colorimetric Analysis
3.13. Sensory Analysis
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, C.; Kaur, A.; Aggarwal, P.; Singh, B. Cereal Bars—A Healthful Choice a Review. Carpathian J. Food Sci. Technol. 2014, 6, 29–36. [Google Scholar]
- Green, H.; Siwajek, P.; Roulin, A. Use of nutrient profiling to identify healthy versus unhealthy snack foods and whether they can be part of a healthy menu plan. J. Nutr. Intermed. Metab. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Campbell, S.; James, E.L.; Stacey, F.G.; Bowman, J.; Chapman, K.; Kelly, B.A. A mixed method examination of food marketing directed towards children in Australian supermarkets. Health Promot. Int. 2014, 29, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofton, E.C.; Markey, A.; Scannell, A.G.M. Consumers’ expectations and needs towards healthy cereal based snacks. Br. Food J. 2013, 115, 1130–1148. [Google Scholar] [CrossRef]
- Aleksejeva, S.; Siksna, I.; Rinkule, S. Composition of cereal bars. J. Health Sci. 2017, 5, 139–145. [Google Scholar]
- Patil, S.S. The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snacks. Foods 2016, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Nguyen, H.; Lam, H.M. Legumes—The art and science of environmentally sustainable agriculture. Plant Cell Environ. 2019, 42, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, J.; López-Donate, J.A. El cultivo del alberjón, una leguminosa interesante para los secanos españoles. Vida Rural 2005, 218, 58–63. [Google Scholar]
- Del Pino-García, R.; Rico, D.; Martín-Diana, A.B. Evaluation of bioactive properties of Vicia narbonensis L. as potential flour ingredient for gluten-free food industry. J. Funct. Foods 2018, 47, 172–183. [Google Scholar]
- Enneking, D.; Delaere, I.M.; Tate, M.E. γ-Glutamyl-S-ethenylcysteine: A dipeptide from Vicia narbonensis. Phytochemistry 1998, 48, 643–645. [Google Scholar] [CrossRef]
- Martín-Pedrosa, M.; Varela, A.; Guillamón, E.; Cabellos, B.; Burbano, C.; Gómez-Fernández, J.; de Mercado, E.; Gómez-Izquierdo, E.; Cuadrado, C.; Muzquiz, M. Biochemical characterization of legume seeds as ingredients in animal feed. Span. J. Agric. Res. 2016, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vioque, R.; Rodríguez-Conde, M.F.; Vioque, J.; Girón-Calle, J.; Santana-Méridas, O.; De los Mozos-Pascual, M.; Alaiz, M. A colorimetric method for determination of γ-Glutamyl-S-ethenylcysteine in narbon vetch (Vicia narbonensis L.) seeds. Anal. Biochem. 2011, 418, 180–183. [Google Scholar]
- Berger, J.D.; Siddique, K.H.M.; Loss, S.P. Cool season grain legumes for Mediterranean environments: Species × environment interaction in seed quality traits and anti-nutritional factors in the genus Vicia. Aus. J. Agric. Res. 1999, 50, 389–401. [Google Scholar] [CrossRef]
- Peryam, D.R. Consumer preference evaluation of the storage stability of foods. Food Technol. 1964, 18, 214. [Google Scholar]
- Dethmers, A.E. Utilizing sensory evaluation to determine product shelf-life. Food Technol. 1979, 33, 40–43. [Google Scholar]
- Rehman, Z.U.; Islam, M.; Shah, W.H. Effect of microwave and conventional cooking on insoluble diary fibre components of vegetables. Food Chem. 2003, 80, 237–240. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujolá, M. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chem. 2016, 197, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Wachtel-Galor, S.; Wong, K.W.; Benzie, F.F. The effect of cooking on Brassica vegetables. Food Chem. 2008, 110, 706–710. [Google Scholar] [CrossRef]
- Faller, A.L.; Fialho, E. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic coking. Food Res. Int. 2009, 42, 210–215. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Björk, I.; Asp, N.G. The effects of extrusion cooking on nutritional value. J. Food Eng. 1983, 2, 281–308. [Google Scholar] [CrossRef]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. Int. J. Food Sci. Technol. 2017, 52, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.M.; Roman, L.; Gomez, M. Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food Chem. 2018, 239, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S. Stability of sorbic acid in aqueous solutions. J. Agric. Food Chem. 1980, 28, 1246–1249. [Google Scholar] [CrossRef]
- Mazumder, P.; Roopa, B.S.; Bhattacharya, S. Textural attributes of a model snack food at different moisture contents. J. Food Eng. 2007, 79, 511–516. [Google Scholar] [CrossRef]
- Randhir, R.; Kwon, Y.I.; Shetty, K. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innov. Food Sci. Emerg. Techno. 2008, 9, 355–364. [Google Scholar] [CrossRef]
- Sosulski, F.; Krygier, K.; Hog, L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem. 1982, 30, 337–340. [Google Scholar] [CrossRef]
- Haard, N.F.; Chism, G.W. Characteristics of edible plants tissues. In Food Chemistry, 3rd ed.; Fennema, O.W., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1996; pp. 944–1011. [Google Scholar]
- Lindenmeier, M.; Faist, V.; Hofmann, T. Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J. Agric. Food Chem. 2004, 50, 6997–7000. [Google Scholar] [CrossRef]
- Avigad, G.; Dey, P.M. Carbohydrate Metabolism: Storage Carbohydrates. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: London, UK, 1997; pp. 143–203. [Google Scholar]
- Pulkkinen, M.; Coda, R.; Lampi, A.M.; Varis, J.; Katina, K.; Pironen, V. Possibilities of reducing amounts of vicine and convicine in faba bean suspensions and sourdoughs. Eur. Food Res. Technol. 2019, 245, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Rizzello, C.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mazur, W.M.; Duke, J.A.; Wähälä, K.; Rasku, S.; Adlercreutz, H. Isoflavonoids and Lignans in Legumes: Nutritional and Health Aspects in Humans. J. Nutr. Biochem. 1998, 9, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [Green Version]
- Eid, H.M.; Haddad, P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Cur. Med. Chem. 2017, 24, 355–364. [Google Scholar]
- Vogrincic, M.; Timoracka, M.; Melichacova, S.; Vollmannova, A.; Kreft, V. Degradation of rutin and polyphenols during the preparation of tartary buckwheat bread. J. Agric. Food Chem. 2010, 58, 4883–4887. [Google Scholar] [CrossRef]
- Kwon, T.; Kim, C.T.; Lee, J.H. Transglucosylation of ascorbic acid to ascorbic acid 2-glycoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. Biotechnol. Lett. 2007, 29, 611. [Google Scholar] [CrossRef]
- Hopia, A.; Heinonen, M. Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate. J. Am. Oil Chem. Soc. 1999, 76, 139–144. [Google Scholar] [CrossRef]
- Hofmann, T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques. J. Agric. Food Chem. 1998, 46, 3891–3895. [Google Scholar] [CrossRef]
- Del Castillo, M.; Ferrigno, A.; Acampa, I.; Borrelli, R.; Olano, A.; Martínez-Rodríguez, A.; Fogliano, V. In vitro release of angiotensin-converting enzyme inhibitors, peroxyl-radical scavengers and antibacterial compounds by enzymatic hydrolysis of glycated gluten. J. Cereal Sci. 2007, 45, 327–334. [Google Scholar] [CrossRef]
- Cammerer, B.; Jalyschko, W.; Kroh, L.W. Intact carbohydrate structures as part of the melanoidin skeleton. J. Agric. Food Chem. 2002, 50, 2083–2087. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufián-Henares, J.A.; Morales, F. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J. Agric. Food Chem. 2007, 55, 1480–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, S.A.; Spyroulias, G.A.; Pierattelli, R.; Tzakos, A.; Troganis, A.; Gerothanassis, I.P.; Pairas, G.; Manessi-Zoupa, E.; Cordopatis, P. Zinc binding in peptide models of angiotensin-I converting enzyme active sites studied through H-NMR and chemical shift perturbation mapping. Biopolymers 2003, 69, 244–252. [Google Scholar] [CrossRef]
- Akilhoglu, H.G.; Karakaya, S. Effects of heat treatment and in vitro digestion on the angiotensin converting enzyme inhibitory activity of some legume species. Eur. Food Res. Technol. 2009, 229, 915–921. [Google Scholar] [CrossRef]
- Kellici, T.F.; Liapakis, G.; Tzakos, A.G.; Mavromoustakos, T. Pharmaceutical compositions for antihypertensive treatments: A patent review. Expert Opin. Ther. Pat. 2015, 25, 1305–1317. [Google Scholar]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [Green Version]
- Ahlborn, G.J.; Pike, O.A.; Hendrix, S.B.; Hess, W.M.; Huber, C.S. Sensory, Mechanical, and Microscopic Evaluation of Staling in Low-Protein and Gluten-Free Breads. Cereal Chem. 2005, 82, 328–335. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1977, 28, 49–55. [Google Scholar]
- Martin-Diana, A.B.; Izquierdo, N.; Alnertos, I.; Sanchez, M.S.; Herrero, A.; Sanz, M.A.; Rico, D. Valorization of Carob’s Germ and Seed Peel as Natural Antioxidant Ingredients in Gluten-Free Crackers. J. Food Process. Preserv. 2017, 41, e12770. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Serpen, A.; Capuano, E.; Fogliano, V.; Gokmen, V. A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem. 2007, 55, 7676–7681. [Google Scholar] [CrossRef]
- Ou, B.X.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Sentandreu, M.A.; Toldrá, F. A fluorescence-based protocol for quantifying angiotensin-converting enzyme activiy. Nat. Protoc. 2006, 1, 2423–2427. [Google Scholar] [CrossRef]
- Carabante, K.M.; Prinyawiwatkul, W. Data analyses of a multiple-samples sensory ranking test and its duplicated test: A review. J. Sens. Stud. 2018, 33, e12435. [Google Scholar] [CrossRef]
Sample Availability: Samples are not available from the authors. |
Snack | Temperature (°C) | Time (Minutes) | Fat (%) | Protein (%) | Carbohydrates (%) | Fiber (%) | Ash (%) |
---|---|---|---|---|---|---|---|
1 | 180 | 12.5 | 1.23 | 14.84 | 76.86 | 11.1 | 3.2 |
2 | 160 | 14 | 1.17 | 14.96 | 77.03 | 10.7 | 3.22 |
3 | 180 | 14.62 | 1.79 | 15.01 | 76.42 | 10.8 | 3.2 |
4 | 151.72 | 12.5 | 1.32 | 15.14 | 77.29 | 10.2 | 3.27 |
5 | 160 | 11 | 1.27 | 14.91 | 77.19 | 10.8 | 3.26 |
6 | 200 | 14 | 1.47 | 15.03 | 76.93 | 11.1 | 3.2 |
7 | 180 | 12.5 | 1.44 | 14.94 | 76.79 | 11.3 | 3.21 |
8 | 180 | 10.38 | 1.45 | 15.06 | 76.7 | 10.9 | 3.2 |
9 | 208.28 | 12.5 | 1.26 | 14.86 | 77.07 | 11.8 | 3.16 |
10 | 200 | 11 | 1.28 | 14.89 | 76.87 | 10.6 | 3.17 |
11 | 180 | 12.5 | 1.12 | 14.94 | 76.9 | 10.5 | 3.2 |
Snack | Temperature (°C) | Time (minutes) |
---|---|---|
1 | 180.0 | 12.5 |
2 | 160.0 | 14.0 |
3 | 180.0 | 14.6 |
4 | 151.7 | 12.5 |
5 | 160.0 | 11.0 |
6 | 200.0 | 14.0 |
7 | 180.0 | 12.5 |
8 | 180.0 | 10.4 |
9 | 208.3 | 12.5 |
10 | 200.0 | 11.0 |
11 | 180.0 | 12.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico, D.; González-Paramás, A.M.; Brezmes, C.; Martín-Diana, A.B. Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks. Molecules 2020, 25, 3716. https://doi.org/10.3390/molecules25163716
Rico D, González-Paramás AM, Brezmes C, Martín-Diana AB. Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks. Molecules. 2020; 25(16):3716. https://doi.org/10.3390/molecules25163716
Chicago/Turabian StyleRico, Daniel, Ana M. González-Paramás, Cristina Brezmes, and Ana Belén Martín-Diana. 2020. "Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks" Molecules 25, no. 16: 3716. https://doi.org/10.3390/molecules25163716
APA StyleRico, D., González-Paramás, A. M., Brezmes, C., & Martín-Diana, A. B. (2020). Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks. Molecules, 25(16), 3716. https://doi.org/10.3390/molecules25163716