Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of the Crystal Structure of Cu(II) Complexes
2.2. Physico-Chemical Characterization of Complexes
2.2.1. FT-IR Spectra
2.2.2. UV-Vis Spectra
2.2.3. EPR Spectroscopy
Solid-State EPR Spectroscopy
Solution EPR Spectroscopy
2.2.4. Thermal Analysis
2.3. Biological Characterization
2.3.1. Superoxide Scavenging Ability
2.3.2. Effect of Compounds on Saccharomyces Cerevisiae Cells
2.3.3. DNA Binding Properties of Compounds
Absorption Spectra Modifications
Fluorescence Spectra
2.3.4. Nuclease Activity
2.3.5. Microbiological Assay
2.3.6. Cytotoxicity Assays
3. Materials and Methods
3.1. Reagents
3.2. Physical Measurements
3.3. Synthesis and Characterization of the Complexes
3.4. Biological Characterization of Compounds
3.4.1. Superoxide Scavenging Ability
3.4.2. Yeast Cell Experiments
3.4.3. Spectroscopic Determination of the Compounds’ Interaction with DNA
Effect of DNA on Spectral Characteristics of Compounds
Effect of Compounds on the Fluorescence of λ-DNA/Ethidium Bromide Adduct
3.4.4. Nuclease Activity Assay
3.4.5. Screening of the Antibacterial Properties
3.4.6. In Vitro Cytotoxicity Assay
Cell Culture Conditions
Cell Viability Assay
Measurement of the Hemolytic Activity
Phalloidin Staining and Cell Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- García-Giménez, J.L.; González-Álvarez, M.; Liu-González, M.; Macías, B.; Borrás, J.; Alzuet, G. Toward the development of metal-based synthetic nucleases: DNA binding and oxidative DNA cleavage of a mixed copper (II) complex with N-(9H-purin-6-yl) benzenesulfonamide and 1,10-phenanthroline. Antitumor activity in human Caco-2 cells and Jurkat T lymphocytes. Evaluation of p53 and Bcl-2 proteins in the apoptotic mechanism. J. Inorg. Biochem. 2009, 103, 923–934. [Google Scholar]
- Ferreira, B.L.; Brandao, P.; Meireles, M.; Martel, F.; Correia-Branco, A.; Fernandes, D.M.; Santos, T.M.; Félix, V. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper (II) complex. J. Inorg. Biochem. 2016, 161, 9–17. [Google Scholar] [CrossRef]
- Low, M.L.; Chan, C.W.; Ng, P.Y.; Ooi, I.H.; Maah, M.J.; Chye, S.M.; Tan, K.W.; Ng, S.W.; Ng, C.H. Ternary and binary copper (II) complexes: Synthesis, characterization, ROS-inductive, proteasome inhibitory, and anticancer properties. J. Coord. Chem. 2017, 70, 223–241. [Google Scholar] [CrossRef]
- Anacleto, B.; Gomes, P.; Correia-Branco, A.; Silva, C.; Martel, F.; Brandão, P. Design, structural characterization and cytotoxic properties of copper (I) and copper (II) complexes formed by vitamin B3 type. Polyhedron 2017, 138, 277–286. [Google Scholar] [CrossRef]
- Barrera-Guzman, V.A.; Rodriguez-Hernandez, E.O.; Ortiz-Pastrana, N.; Dominguez-Gonzalez, R.; Caballero, A.B.; Gamez, P.; Barba-Behrens, N. Efficient copper-based DNA cleavers from carboxylate benzimidazole ligands. J. Biol. Inorg. Chem. 2018, 23, 1165–1183. [Google Scholar] [CrossRef]
- Barrett, S.; De Franco, M.; Kellett, A.; Dempsey, E.; Marzano, C.; Erxleben, A.; Gandin, V.; Montagner, D. Anticancer activity, DNA binding and cell mechanistic studies of estrogen-functionalised Cu (II) complexes. J. Biol. Inorg. Chem. 2020, 25, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Gençkal, H.M.; Erkisa, M.; Alper, P.; Sahin, S.; Ulukaya, E.; Ari, F. Mixed ligand complexes of Co (II), Ni (II) and Cu (II) with quercetin and diimine ligands: Synthesis, characterization, anti-cancer and anti-oxidant activity. J. Biol. Inorg. Chem. 2020, 25, 161–177. [Google Scholar] [CrossRef]
- Silva, P.P.; Guerra, W.; Silveira, J.N.; Ferreira, A.M.D.C.; Bortolotto, T.; Fischer, F.L.; Terenzi, H.; Neves, A.; Pereira-Maia, E.C. Two new ternary complexes of copper (II) with tetracycline or doxycycline and 1, 10-phenanthroline and their potential as antitumoral: Cytotoxicity and DNA cleavage. Inorg. Chem. 2011, 50, 6414–6424. [Google Scholar] [CrossRef]
- Loganathan, R.; Ganeshpandian, M.; Bhuvanesh, N.S.; Palaniandavar, M.; Muruganantham, A.; Ghosh, S.K.; Riyasdeen, A.; Akbarsha, M.A. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper (II) complexes of the antibacterial drug nalidixic acid. J. Inorg. Biochem. 2017, 174, 1–13. [Google Scholar] [CrossRef]
- Hernández-Gil, J.; Perello, L.; Ortiz, R.; Alzuet, G.; Gonzalez-Alvarez, M.; Liu-Gonzalez, M. Synthesis, structure and biological properties of several binary and ternary complexes of copper (II) with ciprofloxacin and 1,10-phenanthroline. Polyhedron 2009, 28, 138–144. [Google Scholar] [CrossRef]
- Chalkidou, E.; Perdih, F.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Copper (II) complexes with antimicrobial drug flumequine: Structure and biological evaluation. J. Inorg. Biochem. 2012, 123, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Kostelidou, A.; Kalogiannis, S.; Begou, O.A.; Perdih, F.; Turel, I.; Psomas, G. Synthesis, structure and biological activity of copper (II) complexes with gatifloxacin. Polyhedron 2016, 119, 359–370. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Huang, Y.; Ma, X.; Xiong, X.; Li, H. Synthesis, structure, and biological evaluation of a copper (II) complex with fleroxacin and 1,10-phenanthroline. Dalton Trans. 2016, 45, 10928–10935. [Google Scholar] [CrossRef] [PubMed]
- Simunkova, M.; Lauro, P.; Jomova, K.; Hudecova, L.; Danko, M.; Alwasel, S.; Alhazza, I.M.; Rajcaniova, S.; Kozovska, Z.; Kucerova, L.; et al. Redox-cycling and intercalating properties of novel mixed copper (II) complexes with non-steroidal anti-inflammatory drugs tolfenamic, mefenamic and flufenamic acids and phenanthroline functionality: Structure, SOD-mimetic activity, interaction with albumin, DNA damage study and anticancer activity. J. Inorg. Biochem. 2019, 194, 97–113. [Google Scholar]
- Dimiza, F.; Fountoulaki, S.; Papadopoulos, A.N.; Kontogiorgis, C.A.; Tangoulis, V.; Raptopoulou, C.P.; Psycharis, V.; Terzis, A.; Kessissoglou, D.P.; Psomas, G. Non-steroidal antiinflammatory drug–copper (II) complexes: Structure and biological perspectives. Dalton Trans. 2011, 40, 8555–8568. [Google Scholar] [CrossRef]
- Dimiza, F.; Perdih, F.; Tangoulis, V.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Interaction of copper (II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: Synthesis, structure, DNA-and albumin-binding. J. Inorg. Biochem. 2011, 105, 476–489. [Google Scholar] [CrossRef]
- Tolia, C.; Papadopoulos, A.N.; Raptopoulou, C.P.; Psycharis, V.; Garino, C.; Salassa, L.; Psomas, G. Copper (II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: Structure, antioxidant activity and binding to DNA and albumins. J. Inorg. Biochem. 2013, 123, 53–65. [Google Scholar] [CrossRef]
- Perontsis, S.; Hatzidimitriou, A.G.; Begou, O.A.; Papadopoulos, A.N.; Psomas, G. Characterization and biological properties of copper (II)-ketoprofen complexes. J. Inorg. Biochem. 2016, 162, 22–30. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, K.; Wang, Q.; Xiong, X.; Huang, Y.; Li, H. Synthesis, structure, and calf-thymus DNA binding of ternary fleroxacin-Cu (II) complexes. RSC Adv. 2016, 6, 80286–80295. [Google Scholar] [CrossRef]
- Parsekar, S.U.; Singh, M.; Mishra, D.P.; Sudhadevi Antharjanam, P.K.; Koley, A.P.; Kumar, M. Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu (II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. J. Biol. Inorg. Chem. 2019, 24, 343–363. [Google Scholar] [CrossRef]
- Nakahata, D.H.; De Paiva, R.E.; Lustri, W.R.; Ribeiro, C.M.; Pavan, F.R.; Da Silva, G.G.; Ruiz, A.L.; De Carvalho, J.E.; Corbi, P.P. Sulfonamide-containing copper (II) metallonucleases: Correlations with in vitro antimycobacterial and antiproliferative activities. J. Inorg. Biochem. 2018, 187, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, L.M.; Nunes, J.H.B.; Ribeiro, M.A.; da Costa Ferreira, A.M.; Lustri, W.R.; Corbi, P.P. Copper (II) and silver (I) complexes with sulfamethizole: Synthesis, spectroscopic characterization, ESI-QTOF mass spectrometric analysis, crystal structure and antibacterial activities. Polyhedron 2017, 138, 168–176. [Google Scholar] [CrossRef]
- Sousa, I.; Claro, V.; Pereira, J.L.; Amaral, A.L.; Cunha-Silva, L.; De Castro, B.; Feio, M.J.; Pereira, E.; Gameiro, P. Synthesis, characterization and antibacterial studies of a copper (II) levofloxacin ternary complex. J. Inorg. Biochem. 2012, 110, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Sousa, I.; Cunha-Silva, L.; Ferreira, M.; De Castro, B.; Pereira, E.F.; Feio, M.J.; Gameiro, P. Synthesis, characterization and antibacterial studies of a copper (II) lomefloxacin ternary complex. J. Inorg. Biochem. 2014, 131, 21–29. [Google Scholar] [CrossRef]
- Maldonado, C.R.; Quirós, M.; Salas, J.M. Copper (II) complexes with 1,2,4-triazolo [1,5-a] pyrimidine and its 5,7-dimethyl derivative. Polyhedron 2008, 27, 2779–2784. [Google Scholar] [CrossRef]
- Boutaleb-Charki, S.; Marín, C.; Maldonado, C.R.; Rosales, M.J.; Urbano, J.; Guitierrez-Sánchez, R.; Quirós, M.; Salas, J.M.; Sánchez-Moreno, M. Copper (II) complexes of [1,2,4] triazolo[1,5-a] pyrimidine derivatives as potential anti-parasitic agents. Drug Metab. Lett. 2009, 3, 35–44. [Google Scholar] [CrossRef]
- Łakomska, I.; Fandzloch, M. Application of 1, 2, 4-triazolo [1, 5-a] pyrimidines for the design of coordination compounds with interesting structures and new biological properties. Coord. Chem. Rev. 2016, 327, 221–241. [Google Scholar] [CrossRef]
- Calu, L.; Badea, M.; Cerc Korošec, R.; Bukovec, P.; Daniliuc, C.G.; Chifiriuc, M.C.; Măruţescu, L.; Ciulică, C.; Serban, G.; Olar, R. Thermal behaviour of some novel biologically active complexes with a triazolopyrimidine pharmacophore. J. Therm. Anal. Calorim. 2017, 127, 697–708. [Google Scholar] [CrossRef]
- Olar, R.; Calu, L.; Badea, M.; Chifiriuc, M.C.; Bleotu, C.; Velescu, B.; Stoica, O.; Ionita, G.; Stanica, N.; Silvestro, L.; et al. Thermal behaviour of some biologically active species based on complexes with a triazolopyrimidine pharmacophore. J. Therm. Anal. Calorim. 2017, 127, 685–696. [Google Scholar] [CrossRef]
- Badea, M.; Calu, L.; Čelan Korošin, N.; David, I.G.; Chifiriuc, M.C.; Bleotu, C.; Ionita, G.; Silvestro, L.; Maurer, M.; Olar, R. Thermal behaviour of some biological active perchlorate complexes with a triazolopyrimidine derivative. J. Therm. Anal. Calorim. 2018, 134, 665–677. [Google Scholar] [CrossRef]
- Hathaway, B.J. Oxyanions. In Comprehensive Coordination Chemistry, 1st ed.; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, UK, 1987; pp. 413–434. [Google Scholar]
- Lever, A.B.P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, The Netherlands, 1986; pp. 555–572. [Google Scholar]
- Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B. Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry 1993, 32, 2573–2584. [Google Scholar] [CrossRef] [PubMed]
- Pyle, A.M.; Rehmann, J.P.; Meshoyrer, R.; Kumar, C.V.; Turro, N.J.; Barton, J.K. Mixed-ligand complexes of ruthenium (II): Factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051–3058. [Google Scholar] [CrossRef]
- Nyarko, E.; Hara, T.; Grab, D.J.; Habib, A.; Kim, Y.; Nikolskaia, O.; Fukuma, T.; Tabata, M. In vitro toxicity of palladium (II) and gold (III) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth. Chem. Biol. Interact. 2004, 148, 19–25. [Google Scholar] [CrossRef]
- Rajendran, N.; Kamatchi, N.; Periyasamy, A.; Solomon, V. DNA-interaction, antibacterial and in vitro cytotoxic properties of copper(II) complexes bearing (E)-2-(2-(benzo[d]thiazol-2-ylthio)-1-phenylethylidene) thiosemicarbazone and diimine co-ligands. J. Coord. Chem. 2020, 73, 969–985. [Google Scholar] [CrossRef]
- Libardo, M.D.J.; Bahar, A.A.; Ma, B.; Fu, R.; McCormick, L.E.; Zhao, J.; McCallum, S.A.; Nussinov, R.; Ren, D.; Angeles-Boza, A.M.; et al. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J. 2017, 284, 3662–3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM. F 756-00—Standard Practice for Assessment of Hemolytic Properties of Materials; American Society for Testing of Materials: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Monti, E.; Paracchini, L.; Piccinini, F.; Malatesta, V.; Morazzoni, F.; Supino, R. Cardiotoxicity and antitumor activity of a copper (II)-doxorubicin chelate. Cancer Chemother. Pharmacol. 1990, 25, 333–336. [Google Scholar] [CrossRef]
- Mroueh, M.; Daher, C.; Hariri, E.; Demirdjian, S.; Isber, S.; Choi, E.S.; Mirtamizdoust, B.; Hammud, H.H. Magnetic property, DFT calculation, and biological activity of bis [(μ2-chloro) chloro (1,10-phenanthroline) copper (II)] complex. Chem. Biol. Interact. 2015, 231, 53–60. [Google Scholar] [CrossRef]
- Gurudevaru, C.; Gopalakrishnan, M.; Senthilkumar, K.; Hemachandran, H.; Siva, R.; Srinivasan, T.; Velmurugan, D.; Shanmugan, S.; Palanisami, N. Synthesis and structural and DNA binding studies of mono and dinuclear copper (II) complexes constructed with ─O and ─N donor ligands: Potential anti-skin cancer drugs. Appl. Organometal. Chem. 2017, 31, e3998. [Google Scholar] [CrossRef]
- Kalinowska-Lis, U.; Szabłowska-Gadomska, I.; Lisowska, K.; Ochocki, J.; Małecki, M.; Felczak, A. Cytotoxic and Antimicrobial Properties of Copper (II) Complexes of Pyridine and Benzimidazole Derivatives. Z. Anorg. Allg. Chem. 2017, 643, 993–998. [Google Scholar] [CrossRef]
- Bacalum, M.; Janosi, L.; Zorila, F.; Tepes, A.M.; Ionescu, C.; Bogdan, E.; Hadade, N.; Craciun, L.; Grosu, I.; Turcu, I.; et al. Modulating short tryptophan-and arginine-rich peptides activity by substitution with histidine. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1844–1854. [Google Scholar] [CrossRef]
- Sherman, F. Getting started with yeast. Method Enzymol. 2002, 350, 3–41. [Google Scholar]
- Amberg, D.C.; Burke, D.J.; Strathern, J.N. Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2005. [Google Scholar]
- Ruta, L.L.; Popa, C.V.; Nicolau, I.; Farcasanu, I.C. Calcium signaling and copper toxicity in Saccharomyces cerevisiae cells. Environ. Sci. Pollut. Res. Int. 2016, 23, 24514–24526. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ma, T.; Xu, J.; Wang, Y.; Yu, H.; Yang, Y.; Liu, Y.; Ding, W.; Zhu, W.; Chen, R.; Ge, Z.; et al. Ternary copper (II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties. J. Inorg. Biochem. 2015, 144, 38–46. [Google Scholar] [CrossRef]
- Chee, M.K.; Haase, S.B. New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 Genes Genom. Genet. 2012, 2, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Sarkar, A.; Dey, S.K.; Jose, G.P.; Mukherjee, A.; Sengupta, T.K. Copper (II) complex of methionine conjugated bis-pyrazole based ligand promotes dual pathway for DNA cleavage. Dalton Trans. 2013, 42, 11709–11719. [Google Scholar] [CrossRef] [Green Version]
- Vlaicu, I.D.; Olar, R.; Maxim, C.; Chifiriuc, M.C.; Bleotu, C.; Stănică, N.; Vasile Scăeţeanu, G.; Dulea, C.; Avram, S.; Badea, M. Evaluating the biological potential of some new cobalt (II) complexes with acrylate and benzimidazole derivatives. Appl. Organometal. Chem. 2019, 33, e4976. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Badea, N.; Bacalum, M.; Ungureanu, C.; Suica-Bunghez, I.R.; Iordache, S.M.; Pirvu, C.; Zgura, I.; Maraloiu, V.A. 3D hybrid structures based on biomimetic membranes and Caryophyllus aromaticus-“green” synthesized nano-silver with improved bioperformances. Mat. Sci. Eng. C 2019, 101, 120–137. [Google Scholar] [CrossRef]
- Chilom, C.G.; Găzdaru, D.M.; Bălăsoiu, M.; Bacalum, M.; Stolzar, S.V.; Popescu, A.I. Biomedical application of biogenic ferrihydrite nanoparticles. Rom. J. Phys. 2017, 62, 701. [Google Scholar]
Sample Availability: Samples of the compounds [Cu(bpy)2(pmtp)](ClO4)2 (1) and [Cu(phen)2(pmtp)](ClO4)2 (2) are available from the authors. |
Compound | (1) | (2) |
---|---|---|
Empirical formula | C32H26Cl2CuN8O8 | C37H27Cl2CuN7O8 |
Formula weight | 785.05 | 832.09 |
Temperature/K | 293 | 293 |
Crystal system | monoclinic | triclinic |
Space group | Pa | P-1 |
a/Å | 19.4489(2) | 9.0469(2) |
b/Å | 8.1324(3) | 13.4858(3) |
c/Å | 21.7298(4) | 14.3149(4) |
α/° | 90 | 93.628(3) |
β/° | 102.445(3) | 95.081(2) |
γ/° | 90 | 95.071(4) |
Volume/Å3 | 3356.16(15) | 1728.36(7) |
Z | 4 | 2 |
ρcalcg/cm3 | 1.554 | 1.599 |
μ/mm−1 | 0.874 | 0.853 |
F(000) | 1604.0 | 850.0 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
Reflections collected | 15462 | 20217 |
Independent reflections | 9420 [Rint = 0.0933, Rsigma = 0.0767] | 6042 [Rint = 0.0719, Rsigma = 0.0489] |
Data/restraints/parameters | 9420/2/921 | 6042/7/498 |
Goodness-of-fit on F2 | 1.065 | 1.126 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0910, wR2 = 0.2222 | R1 = 0.0639, wR2 = 0.1782 |
Final R indexes [all data] | R1 = 0.1436, wR2 = 0.2679 | R1 = 0.0721, wR2 = 0.1885 |
Largest diff. peak/hole/e Å−3 | 2.66/−0.61 | 1.794/−1.076 |
Flack parameter | −0.04(4) |
(1) | (2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu1 | N2 | 1.971(15) | N2 | Cu1 | N4 | 176.8(7) | Cu1 | N2 | 1.999(4) | N2 | Cu1 | N4 | 173.26(14) |
Cu1 | N4 | 1.968(16) | N2 | Cu1 | N1 | 80.6(6) | Cu1 | N4 | 2.001(3) | N2 | Cu1 | N1 | 95.30(15) |
Cu1 | N1 | 2.112(16) | N2 | Cu1 | N5 | 90.8(6) | Cu1 | N1 | 2.020(3) | N2 | Cu1 | N3 | 81.11(13) |
Cu1 | N5 | 2.013(14) | N2 | Cu1 | N3 | 95.8(7) | Cu1 | N3 | 2.045(3) | N2 | Cu1 | N5 | 97.20(12) |
Cu1 | N3 | 2.072(18) | N4 | Cu1 | N1 | 98.8(6) | Cu1 | N5 | 2.203(3) | N4 | Cu1 | N1 | 91.29(14) |
Cu2 | N12 | 2.071(17) | N4 | Cu1 | N5 | 92.1(6) | N4 | Cu1 | N3 | 93.70(12) | |||
Cu2 | N9 | 1.995(15) | N4 | Cu1 | N3 | 81.4(7) | N4 | Cu1 | N5 | 79.49(12) | |||
Cu2 | N13 | 1.958(15) | N5 | Cu1 | N1 | 121.9(6) | N1 | Cu1 | N3 | 150.86(12) | |||
Cu2 | N10 | 1.987(15) | N5 | Cu1 | N3 | 130.0(6) | N1 | Cu1 | N5 | 108.61(13) | |||
Cu2 | N11 | 2.056(16) | N3 | Cu1 | N1 | 108.0(7) | |||||||
N9 | Cu2 | N12 | 122.2(7) | ||||||||||
N9 | Cu2 | N11 | 129.6(6) | ||||||||||
N13 | Cu2 | N12 | 81.2(7) | ||||||||||
N13 | Cu2 | N9 | 90.6(6) | ||||||||||
N13 | Cu2 | N10 | 176.9(7) | ||||||||||
N13 | Cu2 | N11 | 97.7(7) | ||||||||||
N10 | Cu2 | N12 | 98.8(7) | ||||||||||
N10 | Cu2 | N9 | 92.0(6) |
Bacterial Strain | pmtp | bpy | *CuBP | (1) | phen | **CuPP | (2) |
---|---|---|---|---|---|---|---|
E. coli 25922 | 3.00 | 4.00 | 0.54 | 0.20 | 3.50 | 0.03 | 0.02 |
E. coli 5 ESBL | 3.00 | 4.00 | 0.54 | 0.40 | 3.50 | 0.03 | 0.05 |
P. aeruginosa 27853 | 3.00 | 8.00 | 1.09 | 0.40 | 7.00 | 0.50 | 0.09 |
P. aeruginosa 9027 | 3.00 | 4.00 | 1.09 | 0.40 | 3.50 | 0.50 | 0.09 |
S. aureus 25923 | 6.00 | 8.00 | 0.27 | 0.40 | 7.00 | 0.03 | 0.01 |
S. aureus 6538 | 3.00 | 8.00 | 0.27 | 0.40 | 7.00 | 0.03 | 0.09 |
MRSA | 6.00 | 8.00 | 0.27 | 0.40 | 7.00 | 0.12 | 0.05 |
Bacterial Strain | pmtp | bpy | CuBP | (1) | phen | CuPP | (2) |
---|---|---|---|---|---|---|---|
E. coli 25922 | 6.00 | 8.00 | 0.54 | 0.40 | 7.00 | 0.10 | 0.02 |
E. coli 5 ESBL | 3.00 | 8.00 | 0.54 | 0.40 | 3.50 | 0.30 | 0.05 |
P. aeruginosa 27853 | 3.00 | 8.00 | 1.09 | 0.40 | 7.00 | 0.50 | 0.09 |
P. aeruginosa 9027 | 1.50 | 4.00 | 1.09 | 0.20 | 3.50 | 0.50 | 0.01 |
S. aureus 25923 | 6.00 | 4.00 | 0.14 | 0.80 | 7.00 | 0.03 | 0.01 |
S. aureus 6538 | 3.00 | 8.00 | 0.14 | 0.10 | 7.00 | 0.03 | 0.02 |
MRSA | 6.00 | 8.00 | 0.27 | 0.40 | 7.00 | 0.10 | 0.05 |
Compound | IC50 (µg/mL; mM) | Hemolysis (%) | TI | ||||
---|---|---|---|---|---|---|---|
B16 Cells | BJ Cells | ||||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | ||
pmtp | ND | ND | ND | ND | 0.61 ± 0.05 | - | - |
(1) | ND | 15.46; 0.02 | ND | ND | 0.59 ± 0.18 | - | 3.23 |
(2) | 6.25; 0.0075 | 3.72; 0.004 | 5.98; 0.007 | 3.30; 0.004 | 0.77 ± 0.14 | 0.95 | 0.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostas, A.M.; Badea, M.; Ruta, L.L.; Farcasanu, I.C.; Maxim, C.; Chifiriuc, M.C.; Popa, M.; Luca, M.; Celan Korosin, N.; Cerc Korosec, R.; et al. Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules 2020, 25, 3777. https://doi.org/10.3390/molecules25173777
Rostas AM, Badea M, Ruta LL, Farcasanu IC, Maxim C, Chifiriuc MC, Popa M, Luca M, Celan Korosin N, Cerc Korosec R, et al. Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules. 2020; 25(17):3777. https://doi.org/10.3390/molecules25173777
Chicago/Turabian StyleRostas, Arpad Mihai, Mihaela Badea, Lavinia L. Ruta, Ileana C. Farcasanu, Catalin Maxim, Mariana Carmen Chifiriuc, Marcela Popa, Mirela Luca, Natasa Celan Korosin, Romana Cerc Korosec, and et al. 2020. "Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species" Molecules 25, no. 17: 3777. https://doi.org/10.3390/molecules25173777
APA StyleRostas, A. M., Badea, M., Ruta, L. L., Farcasanu, I. C., Maxim, C., Chifiriuc, M. C., Popa, M., Luca, M., Celan Korosin, N., Cerc Korosec, R., Bacalum, M., Raileanu, M., & Olar, R. (2020). Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules, 25(17), 3777. https://doi.org/10.3390/molecules25173777