Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Assay of Hydroalcoholic Extracts
2.2. Physicochemical Characterization of Fe3O4@AN Nanoparticles
2.3. Physicochemical Characterization of PLGA–Fe3O4@AN Coatings
2.4. Biological Evaluation of the PLGA–Fe3O4@AN Coatings
2.4.1. In Vitro Toxicity of the PLGA–Fe3O4@AN Coatings against Human Adenocarcinoma HT-29 Cells
2.4.2. Microbiological Evaluation of the Coatings
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Fe3O4@AN NPs
3.2.1. Anthriscus sylvestris (AN) Extract
3.2.2. Functionalized Fe3O4@AN NPs
3.3. MAPLE Experimental Conditions and Deposition of PLGA–Fe3O4@AN Thin Coatings
3.4. Physicochemical Characterization
3.4.1. High-Performance Liquid Chromatography (HPLC) with a Diode-Array Detector (DAD)
3.4.2. Transmission Electron Microscopy
3.4.3. Infrared Microscopy (IR)
3.4.4. Optical Microscopy
3.5. Biological Evaluation
3.5.1. In Vitro Cytotoxicity Assessment
3.5.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 10 June 2020).
- Fernandes, R.T.S.; França, E.L.; Triches, D.L.G.F.; Fujimori, M.; Machi, P.G.F.; Massmman, P.F.; Tozetti, I.A.; Honorio-França, A.C. Nanodoses of melatonin induces apoptosis on human breast cancer cells co-cultured with colostrum cells. Biointerface Res. Appl. Chem. 2019, 9, 4416–4423. [Google Scholar] [CrossRef]
- Howlader, N.N.A.; Krapcho, M.; Garshell, J.; Miller, D.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; et al. SEER Cancer Statistics Review, 1975-2012; National Cancer Institute: Bethesda, MD, USA, 2015. [Google Scholar]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Faden, A.A. The potential role of microbes in oncogenesis with particular emphasis on oral cancer. Saudi Med. J. 2016, 37, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Vuai, M.S.; Zhong, M. The role of bacteria in cancer therapy-enemies in the past, but allies at present. Infect. Agents Cancer 2018, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Golemis, E.A.; Scheet, P.; Beck, T.N.; Scolnick, E.M.; Hunter, D.J.; Hawk, E.; Hopkins, N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev. 2018, 32, 868–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonic, V.; Stojadinovic, A.; Kester, K.E.; Weina, P.J.; Brücher, B.L.D.M.; Protic, M.; Avital, I.; Izadjoo, M. Significance of Infectious Agents in Colorectal Cancer Development. J. Cancer 2013, 4, 227–240. [Google Scholar] [CrossRef]
- Martin, H.M.; Campbell, B.J.; Hart, C.A.; Mpofu, C.; Nayar, M.; Singh, R.; Englyst, H.; Williams, H.F.; Rhodes, J.M. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004, 127, 80–93. [Google Scholar] [CrossRef]
- Maddocks, O.D.; Short, A.J.; Donnenberg, M.S.; Bader, S.; Harrison, D.J. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. Plos One 2009, 4, e5517. [Google Scholar] [CrossRef] [Green Version]
- Buc, E.; Dubois, D.; Sauvanet, P.; Raisch, J.; Delmas, J.; Darfeuille-Michaud, A.; Pezet, D.; Bonnet, R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE 2013, 8, e56964. [Google Scholar] [CrossRef] [Green Version]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Markou, P.; Apidianakis, Y. Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front. Cell. Infect. Microbiol. 2014, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garcia, A.; Rementeria, A.; Aguirre-Urizar, J.M.; Moragues, M.D.; Antoran, A.; Pellon, A.; Abad-Diaz-de-Cerio, A.; Hernando, F.L. Candida albicans and cancer: Can this yeast induce cancer development or progression? Crit. Rev. Microbiol. 2016, 42, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Raphel, J.; Holodniy, M.; Goodman, S.B.; Heilshorn, S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín Ortega, A.M.; Segura Campos, M.R. Chapter 5-Medicinal Plants and Their Bioactive Metabolites in Cancer Prevention and Treatment. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 85–109. [Google Scholar] [CrossRef]
- Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002, 20, 522–531. [Google Scholar] [CrossRef]
- Radwan, A.; Khalid, M.; Amer, H.; Alotaibi, M. Anticancer and molecular docking studies of some new pyrazole-1-carbothioamide nucleosides. Biointerface Res. Appl. Chem. 2019, 9, 4642–4648. [Google Scholar] [CrossRef]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109 (Suppl. 1), 69–75. [Google Scholar] [CrossRef]
- Alviano, D.S.; Alviano, C.S. Plant extracts: Search for new alternatives to treat microbial diseases. Curr. Pharm. Biotechnol. 2009, 10, 106–121. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C. Potential of Herbal Extracts and Bioactive Compounds for Human Healthcare. In The Role of Phytoconstitutents in Health Care: Biocompounds in Medicinal Plant; Goyal, M.R., Suleria, H.A.R., Harikrishnan, R., Eds.; Academic Press: New York, NY, USA, 2020. [Google Scholar]
- Nwonu, C.; Ilesanmi, O.; Agbedahunsi, J.; Nwonu, P.J.I.J.o.H.M. Natural products as veritable source of novel drugs and medicines: A review. Int. J. Herb. Med. 2019, 7, 50–54. [Google Scholar]
- Ghosh, A.; Das, B.K.; Roy, A.; Mandal, B.; Chandra, G. Antibacterial activity of some medicinal plant extracts. J. Nat. Med. 2008, 62, 259–262. [Google Scholar] [CrossRef]
- Hassan, N.; Wali, H.; Faiz-Ul-Hassan; Shuaib, M.; Nisar, M.; Din, M.U.; Wadood, S.F.; Shah, S.S.; Ali, M.; Shah, M. Ethnobotanical study of medicinal plants used for primary health care in Shergarh, District Mardan, Pakistan. Biointerface Res. Appl. Chem. 2018, 8, 3575–3582. [Google Scholar]
- Dias-Souza, M.V.; Dias, C.G.; Ferreira-Marcal, P.H. Interactions of natural products and antimicrobial drugs: Investigations of a dark matter in chemistry. Biointerface Res. Appl. Chem. 2018, 8, 3259–3264. [Google Scholar]
- Vaishali, S.; Deepika, R.; Anuj, K.; Himanshu, C. Formulation and Evaluation of Herbal Tablet Containing Terminalia Chebula Extract. Lett. Appl. Nanobioscience 2019, 8, 692–697. [Google Scholar]
- Sakarkar, D.; Deshmukh, V. Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int. J. Pharm. Tech. Res. 2011, 3, 298–308. [Google Scholar]
- Filippi, A.; Maru, N.; Chifiriuc, M.C.; Grigore, R.; Ganea, C.; Mocanu, M.M. Anticancer effects of curcumin in luminal B and HER2 breast cancer cell line models. Rom. Biotechnol. Lett. 2019, 24, 168–175. [Google Scholar] [CrossRef]
- Rehman, S.S.; Ashraf, A.; Nazli, Z.I.H.; Kausar, A.; Rafique, N.; Perveen, S.; Majeed, H.N.; Shafiq, N. Anticancer Activity of Natural Bioactive Compounds against Human Carcinoma Cell Lines—A mini review. Rom. Biotechnol. Lett. 2019, 24, 937–944. [Google Scholar] [CrossRef]
- Mathiyalagan, S.; Mandal, B.K. Preparation of metal doped quercetin nanoparticles, characterization and their stability study. Lett. Appl. Nanobioscience. 2019, 8, 704–710. [Google Scholar]
- Johnson, M. Antifungal Activity of Different Essential Oils. 2018. Available online: https://digitalcommons.murraystate.edu/postersatthecapitol/2018/PLTW/5/ (accessed on 10 August 2020).
- Bahramian, G.; Golestan, L.; Khosravi-Darani, K. Antimicrobial and antioxidant effect of nanoliposomes containing zataria multiflora boiss essential oil on the rainbow trout fillets during refrigeration. Biointerface Res. Appl. Chem. 2018, 8, 3505–3513. [Google Scholar]
- Marutescu, L.; Popa, M.; Surugiu, M.; Pircalabioru, G.G.; Craciun, N. Physiological profile of microbial communities associated with some plant aquatic species. Rom. Biotechnol. Lett. 2019, 24, 625–634. [Google Scholar] [CrossRef]
- Otuechere, C.A.; Durugbo, E.U.; Adesanya, O.; Omotolani, F.O.; Osho, A. Essential Oil of Alchornea Laxiflora (benth): Phytochemical, Antimicrobial and Toxicity Evaluations. Lett. Appl. Nanobioscience 2019, 8, 661–665. [Google Scholar] [CrossRef]
- Khammee, T.; Phoonan, W.; Ninsuwan, U.; Jaratrungtawee, A.; Kuno, M. Volatile constituents, in vitro and in silico anti-hyaluronidase activity of the essential oil from Gardenia carinata wall. ex roxb. flowers. Biointerface Res. Appl. Chem. 2019, 9, 4649–4654. [Google Scholar] [CrossRef]
- Mittal, R.P.; Rana, A.; Jaitak, V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr. Drug Targets 2019, 20, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Estrela, J.M.; Mena, S.; Obrador, E.; Benlloch, M.; Castellano, G.; Salvador, R.; Dellinger, R.W. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J. Med. Chem. 2017, 60, 9413–9436. [Google Scholar] [CrossRef]
- Collins, D.; Hogan, A.M.; Winter, D.C. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011, 12, 504–512. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef]
- Plunkett, G.M.; Soltis, D.E.; Soltis, P.S. Evolutionary patterns in Apiaceae: Inferences based on matK sequence data. Syst. Bot. 1996, 21, 477–495. [Google Scholar] [CrossRef]
- Kozawa, M.; Baba, K.; Matsuyama, Y.; Kido, T.; Sakai, M.; Takemoto, T. Components of the root of Anthriscus sylvestris HOFFM. II. Insecticidal activity. Chem. Pharm. Bull. 1982, 30, 2885–2888. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.J.; Choi, J.M.; Kim, H.M.; Choi, K.; Ku, J.; Park, K.-W.; Kim, J.; Lee, S. Antibacterial activity and protective effect against gastric cancer by Anthriscus sylvestris fractions. Hortic. Environ. Biotechnol. 2013, 54, 326–330. [Google Scholar] [CrossRef]
- Ikeda, R.; Nagao, T.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem. Pharm. Bull. 1998, 46, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Artacho, B.; Gallardo, V.; Ruiz, M.A.; Arias, J.L. Maghemite/poly (D, L-lactide-co-glycolyde) composite nanoplatform for therapeutic applications. J. Nanoparticle Res. 2012, 14, 768. [Google Scholar] [CrossRef]
- Prodan, A.M.; Beuran, M.; Turculet, C.S.; Popa, M.; Andronescu, E.; Bleotu, C.; Raita, S.M.; Soare, M.; Lupescu, O. In vitro evaluation of glycerol coated iron oxide nanoparticles in solution. Rom. Biotechnol. Lett. 2018, 23, 13901–13908. [Google Scholar] [CrossRef]
- Sala, F.; Boldea, M.; Botau, D.; Pirvulescu, A.; Gergen, I. Fe3O4-water based magnetic nanofluid influence on weight loss of wheat seedlings under controlled conditions. Rom. Biotechnol. Lett. 2019, 24, 308–316. [Google Scholar] [CrossRef]
- Taresco, V.; Francolini, I.; Padella, F.; Bellusci, M.; Boni, A.; Innocenti, C.; Martinelli, A.; D’Ilario, L.; Piozzi, A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 52, 72–81. [Google Scholar] [CrossRef]
- Hashemi, E.; Mahdavi, H.; Khezri, J.; Razi, F.; Shamsara, M.; Farmany, A. Enhanced Gene Delivery in Bacterial and Mammalian Cells Using PEGylated Calcium Doped Magnetic Nanograin. Int. J. Nanomed. 2019, 14, 9879–9891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negut, I.; Grumezescu, V.; Dorcioman, G. Progress of nanoparticles research in cancer therapy and diagnosis. In Nanostructures for Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 159–176. [Google Scholar]
- Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trac Trends Anal. Chem. 2016, 80, 30–40. [Google Scholar] [CrossRef]
- Arzani, H.; Adabi, M.; Mosafer, J.; Dorkoosh, F.; Khosravani, M.; Maleki, H.; Nekounam, H.; Kamali, M. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res. Appl. Chem. 2019, 9, 4225–4231. [Google Scholar] [CrossRef]
- Albinali, K.E.; Zagho, M.M.; Deng, Y.; Elzatahry, A.A. A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. Int. J. Nanomed. 2019, 14, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malekpour, M.R.; Naghibzadeh, M.; Najafabadi, M.R.H.; Esnaashari, S.S.; Adabi, M.; Mujokoro, B.; Khosravani, M.; Adabi, M. Effect of various parameters on encapsulation efficiency of mPEG-PLGA nanoparticles: Artificial neural network. Biointerface Res. Appl. Chem. 2018, 8, 3267–3272. [Google Scholar]
- Grumezescu, V.; Negut, I. Nanocoatings and thin films. In Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures; Elsevier: Cambridge, MA, USA, 2019; pp. 463–477. [Google Scholar]
- Grumezescu, V.; Negut, I.; Gherasim, O.; Birca, A.C.; Grumezescu, A.M.; Hudita, A.; Galateanu, B.; Costache, M.; Andronescu, E.; Holban, A.M. Antimicrobial applications of MAPLE processed coatings based on PLGA and lincomycin functionalized magnetite nanoparticles. Appl. Surf. Sci. 2019, 484, 587–599. [Google Scholar] [CrossRef]
- Domitrovic, R. The molecular basis for the pharmacological activity of anthocyans. Curr. Med. Chem. 2011, 18, 4454–4469. [Google Scholar] [CrossRef]
- Stoner, G.D.; Wang, L.-S.; Sardo, C.; Zikri, N.; Hecht, S.S.; Mallery, S.R. Cancer prevention with berries: Role of anthocyanins. In Bioactive Compounds and Cancer; Springer Nature Switzerland AG: Cham, Switzerland, 2010; pp. 703–723. [Google Scholar]
- Choi, E.J.; Kim, G.-H. Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells. Mol. Med. Rep. 2013, 7, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Raeisi, S.; Chavoshi, H.; Mohammadi, M.; Ghorbani, M.; Sabzichi, M.; Ramezani, F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem. 2019, 83, 168–175. [Google Scholar] [CrossRef]
- Shay, J.; Elbaz, H.A.; Lee, I.; Zielske, S.P.; Malek, M.H.; Hüttemann, M. Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxidative Med. Cell. Longev. 2015, 2015, 181260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Wang, L.-L.; Xue, N.-N.; Li, C.; Guo, H.-H.; Ren, T.-K.; Zhan, Y.; Li, W.-B.; Zhang, J.; Chen, X.-G. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 2019, 9, 6745. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Gao, Z.; Yang, W.; Wang, J.; Yuan, Y.; Wang, B.; Zhang, M.; Liu, L. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater. Sci. Eng. B 2013, 178, 736–743. [Google Scholar] [CrossRef]
- Ficai, D.; Grumezescu, V.; Fufă, O.M.; Popescu, R.C.; Holban, A.M.; Ficai, A.; Grumezescu, A.M.; Mogoanta, L.; Mogosanu, G.D.; Andronescu, E. Antibiofilm coatings based on PLGA and nanostructured cefepime-functionalized magnetite. Nanomaterials 2018, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Grumezescu, A.M.; Andronescu, E.; Holban, A.M.; Ficai, A.; Ficai, D.; Voicu, G.; Grumezescu, V.; Balaure, P.C.; Chifiriuc, C.M. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. Int. J. Pharm. 2013, 454, 233–240. [Google Scholar] [CrossRef]
- Grumezescu, V.; Socol, G.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Truşcǎ, R.; Bleotu, C.; Balaure, P.C.; Cristescu, R.; Chifiriuc, M.C. Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl. Surf. Sci. 2014, 302, 262–267. [Google Scholar] [CrossRef]
- Grumezescu, V.; Holban, A.M.; Iordache, F.; Socol, G.; Mogoşanu, G.D.; Grumezescu, A.M.; Ficai, A.; Vasile, B.Ş.; Truşcă, R.; Chifiriuc, M.C. MAPLE fabricated magnetite@ eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl. Surf. Sci. 2014, 306, 16–22. [Google Scholar] [CrossRef]
- Zhang, H.-M. Identification of ginseng and its counterfeit by laser Raman spectroscopy. Spectrosc. Spectr. Anal. 2012, 32, 989–992. [Google Scholar]
- Liakos, I.; Grumezescu, A.M.; Holban, A.M. Magnetite nanostructures as novel strategies for anti-infectious therapy. Molecules 2014, 19, 12710–12726. [Google Scholar] [CrossRef]
- Grumezescu, V.; Gherasim, O.; Negut, I.; Banita, S.; Holban, A.M.; Florian, P.; Icriverzi, M.; Socol, G. Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. Materials 2019, 12, 2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marková, Z.; Šišková, K.; Filip, J.; Šafářová, K.; Prucek, R.; Panáček, A.; Kolář, M.; Zbořil, R. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem. 2012, 14, 2550–2558. [Google Scholar] [CrossRef]
- Grumezescu, A.M.; Holban, A.; Andronescu, E.; Ficai, A.; Bleotu, C.; Chifiriuc, M.C. Water dispersible metal oxide nanobiocomposite as a potentiator of the antimicrobial activity of kanamycin. Lett. Appli. NanoBioScience 2012, 1, 77–82. [Google Scholar]
- Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Ficai, D.; Huang, K.S.; Gheorghe, I.; Chifiriuc, C.M. Water soluble magnetic biocomposite with potential applications for the antimicrobial therapy. Biointerface Res. Appl. Chem. 2012, 2, 469–475. [Google Scholar]
- Grumezescu, A.M.; Cristescu, R.; Chifiriuc, M.; Dorcioman, G.; Socol, G.; Mihailescu, I.; Mihaiescu, D.E.; Ficai, A.; Vasile, O.; Enculescu, M. Chrisey, D.B. Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication 2015, 7, 015014. [Google Scholar] [CrossRef]
- Chifiriuc, M.C.; Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Cotar, A.I.; Grumezescu, V.; Bezirtzoglou, E.; Lazar, V.; Radulescu, R. Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe 2013, 22, 14–19. [Google Scholar] [CrossRef]
- Stan, M.S.; Constanda, S.; Grumezescu, V.; Andronescu, E.; Ene, A.M.; Holban, A.M.; Vasile, B.S.; Mogoantă, L.; Bălşeanu, T.-A.; Mogoşanu, G.D. Thin coatings based on ZnO@ C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth. Appl. Surf. Sci. 2016, 374, 318–325. [Google Scholar] [CrossRef]
- Grumezescu, V.; Negut, I.; Grumezescu, A.M.; Ficai, A.; Dorcioman, G.; Socol, G.; Iordache, F.; Truşcă, R.; Vasile, B.S.; Holban, A.M. MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Appl. Surf. Sci. 2018, 448, 230–236. [Google Scholar] [CrossRef]
- Negut, I.; Grumezescu, V.; Ficai, A.; Grumezescu, A.M.; Holban, A.M.; Popescu, R.C.; Savu, D.; Vasile, B.S.; Socol, G. MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Appl. Surf. Sci. 2018, 455, 513–521. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Peak | Compound | TR * | Concentration | |||
---|---|---|---|---|---|---|
(mg/L) | (min) | (mg/L) | ||||
Extract 1 | Extract 2 | Extract 3 | Average | |||
1 | Tannic acid | 2.496 | 3.35 | 3.44 | 3.47 | 3.42 ± 0.06 |
2 | Caffeic acid | 19.573 | 13.48 | 12.95 | 14.19 | 13.54 ± 0.63 |
3 | Chlorogenic acid | 20.88 | 373.16 | 370.79 | 377.36 | 373.77 ± 3.33 |
4 | Epicatechin (-) | 22.913 | 402.46 | 410.05 | 419.68 | 410.73 ± 8.63 |
5 | Delphinidin | 23.262 | 33.39 | 30.09 | 31.62 | 31.7 ± 1.65 |
6 | Daidzein | 26.719 | 10.90 | 10.74 | 11.26 | 10.97 ± 0.27 |
7 | Rutin | 30.302 | 172.01 | 171.37 | 173.10 | 172.16 ± 0.87 |
8 | Malvidin | 33.098 | 496.85 | 485.31 | 497.83 | 493.33 ± 6.96 |
9 | Naringenin | 39.087 | 16.18 | 13.64 | 17.87 | 15.9 ± 2.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Bîrcă, A.C.; Holban, A.M.; Urzica, I.; Avramescu, S.M.; Gălățeanu, B.; Hudiță, A. Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules 2020, 25, 3866. https://doi.org/10.3390/molecules25173866
Negut I, Grumezescu V, Grumezescu AM, Bîrcă AC, Holban AM, Urzica I, Avramescu SM, Gălățeanu B, Hudiță A. Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules. 2020; 25(17):3866. https://doi.org/10.3390/molecules25173866
Chicago/Turabian StyleNegut, Irina, Valentina Grumezescu, Alexandru Mihai Grumezescu, Alexandra Cătălina Bîrcă, Alina Maria Holban, Iuliana Urzica, Sorin Marius Avramescu, Bianca Gălățeanu, and Ariana Hudiță. 2020. "Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity" Molecules 25, no. 17: 3866. https://doi.org/10.3390/molecules25173866
APA StyleNegut, I., Grumezescu, V., Grumezescu, A. M., Bîrcă, A. C., Holban, A. M., Urzica, I., Avramescu, S. M., Gălățeanu, B., & Hudiță, A. (2020). Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules, 25(17), 3866. https://doi.org/10.3390/molecules25173866