The Inhibitory Effects of Heterotrigona Itama Honey Marinades on the Formation of Carcinogenic Heterocyclic Amines in Grilled Beef Satay
Abstract
:1. Introduction
2. Results and Discussion
2.1. Marinade Uptake
2.2. Cooking Loss
2.3. Internal Temperature
2.4. LOD, LOQ, and Recovery of HCAs
2.5. Amino Acids, Creatinine, and Sugars Profile (Fructose, Glucose, Sucrose, Maltose)
2.6. HCAs Content in Grilled Beef Satay
2.7. The Influence of Types of Marinades
2.8. Reduction of HCAs
2.9. Multivariate Data Analysis
2.9.1. Orthogonal Partial Least Squares Regression
2.9.2. Partial Least Squares Regression
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Raw Materials
3.3. Beef Satay Preparation
3.4. Grilling Conditions
3.5. Marinade Uptake
3.6. Cooking Loss
3.7. Analysis of HCAs
3.7.1. HCAs Extraction and Clean-Up Procedures
3.7.2. HPLC Analysis of HCAs
3.7.3. LOD, LOQ, and Recovery of HCAs
3.8. Determination of Precursors in Raw Beef Satay Samples
3.8.1. Amino Acids
3.8.2. Sugars Profile (Fructose, Glucose, Maltose, and Sucrose)
3.8.3. Creatinine
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, W.; Lee, S.A. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr. Cancer 2009, 61, 437–446. [Google Scholar] [CrossRef]
- Jägerstad, M.; Skog, K. Genotoxicity of heat-processed foods. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 2005, 574, 156–172. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risk to Humans. Some Naturally Occurring Substances: Food Items and Constituents. Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1993; Volume 56. [Google Scholar]
- Alaejos, M.S.; Ayala, J.H.; González, V.; Afonso, A.M. Analytical methods applied to the determination of heterocyclic aromatic amines in foods. J. Chromatogr. B 2008, 862, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M. Chemistry, formation and occurrence of genotoxic heterocyclic aromatic amines in fried products. Eur. J. Lipid Sci. Technol. 2004, 106, 777–785. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci. 2010, 85, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Polak, T.; Došler, D.; Žlender, B.; Gašperlin, L. Heterocyclic amines in aged and thermally treated pork longissimus dorsi muscle of normal and PSE quality. LWT 2009, 42, 504–513. [Google Scholar] [CrossRef]
- Wang, P.; Hong, Y.; Ke, W.; Hu, X.; Chen, F. Formation of heterocyclic amines in Chinese marinated meat: Effects of animal species and ingredients (rock candy, soy sauce and rice wine). J. Sci. Food Agric. 2017, 97, 3967–3978. [Google Scholar] [CrossRef] [PubMed]
- Gibis, M.; Weiss, J. Impact of precursors creatine, creatinine, and glucose on the formation of heterocyclic aromatic amines in grilled patties of various animal species. J. Food Sci. 2015, 80, C2430–C2439. [Google Scholar] [CrossRef]
- Liao, G.Z.; Wang, G.Y.; Xu, X.L.; Zhou, G.H. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci. 2010, 85, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Oz, F.; Yuzer, M.O. The effects of cooking on wire and stone barbecue at different cooking levels on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef steak. Food Chem. 2016, 203, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Oguri, A.; Suda, M.; Totsuka, Y.; Sugimura, T.; Wakabayashi, K. Inhibitory effects of antioxidants on formation of heterocyclic amines. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 1998, 402, 237–245. [Google Scholar] [CrossRef]
- Oz, F.; Kotan, G. Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control 2016, 67, 216–224. [Google Scholar] [CrossRef]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market. Food Control 2017, 73, 306–315. [Google Scholar] [CrossRef]
- Jägerstad, M.; Skog, K.; Arvidsson, P.; Solyakov, A. Chemistry, formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Z. Lebensm Unters F. A 1998, 207, 419–427. [Google Scholar] [CrossRef]
- Alaejos, M.S.; Afonso, A.M. Factors that affect the content of heterocyclic aromatic amines in foods. Compr. Rev. Food Sci. Food 2011, 10, 52–108. [Google Scholar] [CrossRef]
- Cheng, K.W.; Wu, Q.; Zheng, Z.P.; Peng, X.; Simon, J.E.; Chen, F.; Wang, M. Inhibitory effect of fruit extracts on the formation of heterocyclic amines. J. Agric. Food Chem. 2007, 55, 10359–10365. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.A.; Zhang, Y.; Teng, H.; Li, S.; Wang, F.; Peng, Z. Inhibitory effect of Rosa rugosa tea extract on the formation of heterocyclic amines in meat patties at different temperatures. Molecules 2016, 21, 173. [Google Scholar] [CrossRef]
- Keşkekoğlu, H.; Üren, A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci. 2014, 96, 1446–1451. [Google Scholar] [CrossRef]
- Puangsombat, K.; Jirapakkul, W.; Smith, J.S. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties. J. Food Sci. 2011, 76, T174–T180. [Google Scholar] [CrossRef]
- Lee, J.; Dong, A.; Jung, K.; Shin, H.S. Influence of extra virgin olive oil on the formation of heterocyclic amines in roasted beef steak. Food Sci. Biotechnol. 2011, 20, 159–165. [Google Scholar] [CrossRef]
- Vitaglione, P.; Fogliano, V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B 2004, 802, 189–199. [Google Scholar] [CrossRef]
- Cheng, K.W.; Wong, C.C.; Cho, C.K.; Chu, I.K.; Sze, K.H.; Lo, C.; Chen, F.; Wang, M. Trapping of phenylacetaldehyde as a key mechanism responsible for naringenin’s inhibitory activity in mutagenic 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine formation. Chem. Res. Toxicol. 2008, 21, 2026–2034. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Boukraa, L.; Bellik, Y.; Abdellah, F.; Bakhotmah, B.A.; Kolayli, S.; Sahin, H. Evaluation of the antioxidant activity of three varieties of honey from different botanical and geographical origins. Glob. J. Health Sci. 2012, 4, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.S.; Strasburg, G.M.; Ustunol, Z. Influence of different unifloral honeys on heterocyclic aromatic amine formation and overall mutagenicity in fried ground-beef patties. J. Food Sci. 2003, 68, 810–815. [Google Scholar] [CrossRef]
- Shin, H.S.; Ustunol, Z. Influence of honey-containing marinades on heterocyclic aromatic amine formation and overall mutagenicity in fried beef steak and chicken breast. J. Food Sci. 2004, 69, FCT147–FCT153. [Google Scholar] [CrossRef]
- Hasnol, N.D.S.; Jinap, S.; Sanny, M. Effect of different types of sugars in a marinating formulation on the formation of heterocyclic amines in grilled chicken. Food Chem. 2014, 145, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Komoltri, P.; Pakdeechanuan, P. Effects of marinating ingredients on physicochemical, microstructural and sensory properties of golek chicken. Int. Food Res. J. 2012, 19, 1449–1455. [Google Scholar]
- Yücel, B.; Önenç, A.; Bayraktar, H.; Açikgöz, Z.; Altan, Ö. Effect of honey treatment on some quality characteristics of broiler breast meat. J. Appl. Anim. Res. 2005, 28, 53–56. [Google Scholar] [CrossRef]
- Jinap, S.; Iqbal, S.Z.; Selvam, R.M. Effect of selected local spices marinades on the reduction of heterocyclic amines in grilled beef (satay). LWT 2015, 63, 919–926. [Google Scholar] [CrossRef]
- Lara, M.S.; Gutierrez, J.I.; Timon, M.; Andrés, A.I. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011, 88, 481–488. [Google Scholar] [CrossRef]
- Skog, K.; Jägerstad, M.; Reuterswärd, A.L. Inhibitory effect of carbohydrates on the formation of mutagens in fried beef patties. Food Chem. Toxicol. 1992, 30, 681–688. [Google Scholar] [CrossRef]
- Aktaş, N.; Aksu, M.I.; Kaya, M. The effect of organic acid marination on tenderness, cooking loss and bound water content of beef. J. Muscle Foods 2003, 14, 181–194. [Google Scholar] [CrossRef]
- Medyński, A.; Pospiech, E.; Kniat, R. Effect of various concentrations of lactic acid and sodium chloride on selected physico-chemical meat traits. Meat Sci. 2000, 55, 285–290. [Google Scholar] [CrossRef]
- Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Gao, Y.; Chen, J. Effect of six Chinese spices on heterocyclic amine profiles in roast beef patties by ultra-performance liquid chromatography-tandem mass spectrometry and principal component analysis. J. Agric. Food Chem. 2014, 62, 9908–9915. [Google Scholar] [CrossRef]
- Knize, M.G.; Sinha, R.; Rothman, N.; Brown, E.D.; Salmon, C.P.; Levander, O.A.; Cunningham, P.L.; Felton, J.S. Heterocyclic amine content in fast-food meat products. Food Chem. Toxicol. 1995, 33, 545–551. [Google Scholar] [CrossRef]
- Skog, K.; Solyakov, A. Heterocyclic amines in poultry products: A literature review. Food Chem. Toxicol. 2002, 40, 1213–1221. [Google Scholar] [CrossRef]
- Kizil, M.; Oz, F.; Besler, H.T. A review on the formation of carcinogenic/mutagenic heterocyclic aromatic amines. J. Food Process. Technol. 2011, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Persson, E.; Graziani, G.; Ferracane, R.; Fogliano, V.; Skog, K. Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beef burgers. Food Chem. Toxicol. 2003, 41, 1587–1597. [Google Scholar] [CrossRef]
- Gross, G.A.; Grüter, A. Quantitation of mutagegnic/carcinogenic heterocyclic aromatic amines in food products. J. Chromatogr. A 1992, 592, 271–278. [Google Scholar] [CrossRef]
- Puangsombat, K.; Gadgil, P.; Houser, T.A.; Hunt, M.C.; Smith, J.S. Occurrence of heterocyclic amines in cooked meat products. Meat Sci. 2012, 90, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinap, S.; Mohd-Mokhtar, M.S.; Farhadian, A.; Hasnol, N.D.S.; Jaafar, S.N.; Hajeb, P. Effects of varying degrees of doneness on the formation of heterocyclic aromatic amines in chicken and beef satay. Meat Sci. 2013, 94, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Jinap, S.; Hasnol, N.D.S.; Sanny, M.; Jahurul, M.H.A. Effect of organic acid ingredients in marinades containing different types of sugar on the formation of heterocyclic amines in grilled chicken. Food Control 2018, 84, 478–484. [Google Scholar] [CrossRef]
- Szterk, A.; Waszkiewicz-Robak, B. Influence of selected quality factors of beef on the profile and the quantity of heterocyclic aromatic amines during processing at high temperature. Meat Sci. 2014, 96, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, F.; Yong, W.; Chen, S.; Yang, M.L.; Ling, Y.; Chu, X.; Lin, J.M. Potential sources of carcinogenic heterocyclic amines in Chinese mutton shashlik. Food Chem. 2010, 123, 647–652. [Google Scholar] [CrossRef]
- Gibis, M.; Kruwinnus, M.; Weiss, J. Impact of different pan-frying conditions on the formation of heterocyclic aromatic amines and sensory quality in fried bacon. Food Chem. 2015, 168, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Bordas, M.; Moyano, E.; Puignou, L.; Galceran, M.T. Formation and stability of heterocyclic amines in a meat flavour model system: Effect of temperature, time and precursors. J. Chromatogr. B 2004, 802, 11–17. [Google Scholar] [CrossRef]
- Totsuka, Y.; Ushiyama, H.; Ishihara, J.; Sinha, R.; Goto, S.; Sugimura, T.; Wakabayashi, K. Quantification of the co-mutagenic β-carbolines, norharman and harman, in cigarette smoke condensates and cooked foods. Cancer Lett. 1999, 143, 139–143. [Google Scholar] [CrossRef]
- Skog, K.; Solyakov, A.; Jägerstad, M. Effects of heating conditions and additives on the formation of heterocyclic amines with reference to amino-carbolines in a meat juice model system. Food Chem. 2000, 68, 299–308. [Google Scholar] [CrossRef]
- Rönner, B.; Lerche, H.; Bergmüller, W.; Freilinger, C.; Severin, T.; Pischetsrieder, M. Formation of tetrahydro-β-carbolines and β-carbolines during the reaction of L-tryptophan with D-glucose. J. Agric. Food Chem. 2000, 48, 2111–2116. [Google Scholar] [CrossRef]
- Ziegenhagen, R.; Boczek, P.; Viell, B. Formation of the comutagenic beta-carboline norharman in a simple tryptophan-containing model system at low temperature (40 °C–80 °C). In Tryptophan, Serotonin, and Melatonin; Huether, G., Kochen, W., Simat, T.J., Steinhart, H., Eds.; Springer: Boston, MA, USA, 1999; Volume 467, pp. 693–696. [Google Scholar]
- Szterk, A. Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. J. Food Compos. Anal. 2015, 40, 39–46. [Google Scholar] [CrossRef]
- Szterk, A.; Roszko, M.; Małek, K.; Kurek, M.; Zbieć, M.; Waszkiewicz-Robak, B. Profiles and concentrations of heterocyclic aromatic amines formed in beef during various heat treatments depend on the time of ripening and muscle type. Meat Sci. 2012, 92, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Gibis, M. Effect of oil marinades with garlic, onion, and lemon juice on the formation of heterocyclic aromatic amines in fried beef patties. J. Agric. Food Chem. 2007, 55, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.W.; Wong, C.C.; Chao, J.; Lo, C.; Chen, F.; Chu, I.K.; Che, C.M.; Ho, C.T.; Wang, M. Inhibition of mutagenic PhIP formation by epigallocatechin gallate via scavenging of phenylacetaldehyde. Mol. Nutr. Food Res. 2009, 53, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.M.; Kao, T.H.; Chen, B.H. Effects of heating time and antioxidants on the formation of heterocyclic amines in marinated foods. J. Chromatogr. B 2004, 802, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Quelhas, I.; Petisca, C.; Viegas, O.; Melo, A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of green tea marinades on the formation of heterocyclic aromatic amines and sensory quality of pan-fried beef. Food Chem. 2010, 122, 98–104. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Shamsul Bahri, A.R.; Jambari, N.N.; Khatib, A. A Comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules 2019, 24, 3898. [Google Scholar] [CrossRef] [Green Version]
- Puangsombat, K.; Smith, J.S. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J. Food Sci. 2010, 75, T40–T47. [Google Scholar] [CrossRef]
- Carvalho, C.A.; Sodré, G.S.; Fonseca, A.A.; Alves, R.M.; Souza, B.A.; Clarton, L. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process. An. Acad. Bras. Ciênc. 2009, 81, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.M.S.; dos Santos, F.P.; Evangelista-Rodrigues, A.; da Silva, E.M.S.; da Silva, G.S.; de Novais, J.S.; Camara, C.A. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compos. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Ahmad Kamal, N.H.; Selamat, J.; Sanny, M. Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Addit. Contam. A 2018, 35, 848–869. [Google Scholar] [CrossRef]
- Messner, C.; Murkovic, M. Evaluation of a new model system for studying the formation of heterocyclic amines. J. Chromatogr. B 2004, 802, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Grün, I.U. Heterocyclic amines: 2. Inhibitory effects of natural extracts on the formation of polar and nonpolar heterocyclic amines in cooked beef. J. Food Sci. 2005, 70, C263–C268. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Barroso, M.A.; Ruiz, J.; Antequera, T. A rapid and accurate extraction procedure for analysing free amino acids in Meat samples by GC-MS. Int. J. Anal. Chem. 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Åman, P.; Andersson, R.; Kamal-Eldin, A. Analysis of free amino acids in cereal products. Food Chem. 2007, 105, 317–324. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Treatment | Marinade Uptake (%) | Cooking Loss (%) | Internal Temperature (°C) |
---|---|---|---|
Unmarinated | NA | 35.38 ± 0.34 a | 84.17 ± 0.15 a |
Marinated with: | |||
Table sugar (control) | 26.21 ± 0.18 c | 34.10 ± 0.25 b | 82.47 ± 0.47 b |
Apis mellifera honey | 29.78 ± 0.37 b | 32.69 ± 0.66 c | 80.83 ± 0.68 c |
Acacia honey | 33.32 ± 0.43 a | 28.88 ± 0.42 d | 75.40 ± 0.78 d |
Starfruit honey | 32.28 ± 0.57 a | 28.10 ± 0.29 d | 74.03 ± 0.57 d,e |
Gelam honey | 31.12 ± 0.76 a | 28.46 ± 0.39 d | 73.00 ± 0.20 e |
Amino Acids | Unmarinated Samples | Types of Marination | ||||
---|---|---|---|---|---|---|
Table Sugar | Apis Mellifera | Acacia | Starfruit | Gelam | ||
Alanine | 5.51 ± 0.33 a | 4.81 ± 0.13 b | 5.73 ± 0.22 a | 4.57 ± 0.17 b | 4.89 ± 0.60 b | 4.86 ± 0.12 b |
Sarcosine | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Glycine | 1.96 ± 0.06 a | 1.54 ± 0.06 b | 1.77 ± 0.20 a | 1.24 ± 0.06 c | 1.31 ± 0.16 c | 1.43 ± 0.05 b,c |
α-Amino butyric acid | <LOQ c | <LOQ c | 0.19 ± 0.06 a | <LOQ c | 0.12 ± 0.00 b | 0.16 ± 0.07 a,b |
Valine | <LOQ d | 1.01 ± 0.09 b | 1.29 ± 0.03 a | 0.70 ± 0.07 c | <LOQ d | 0.80 ± 0.20 c |
β-Amino iso butyric acid | 2.40 ± 1.06 a | 1.77 ± 0.30 a | 1.99 ± 0.53 a | 1.53 ± 0.63 a | 1.94 ± 0.10 a | 1.73 ± 0.30 a |
Leucine | 1.58 ± 0.91 a | 1.59 ± 0.50 a | 1.37 ± 0.80 a,b | 1.85 ± 0.34 a | 0.37 ± 0.01 b | 1.40 ± 0.89 a,b |
Allo-isoleucine | 1.21 ± 0.70 a,b | 1.50 ± 1.01 a,b | 1.92 ± 1.27 a | <LOQ b | 2.65 ± 0.22 a | 1.31 ± 1.46 a,b |
Isoleucine | 0.17 ± 0.05 c | <LOQ d | 0.67 ± 0.11 a | 0.44 ± 0.03 b | <LOQ d | <LOQ d |
Threonine | <LOQ d | 0.71 ± 0.06 b | 0.89 ± 0.08 a | 0.50 ± 0.05 c | 0.44 ± 0.11 c | 0.67 ± 0.05 b |
Serine | 1.47 ± 0.25 d | 2.72 ± 0.10 a,b,c | 3.33 ± 0.22 a | 2.51 ± 0.01 b,c | 3.07 ± 0.29 a,b | 2.20 ± 0.92 c,d |
Proline | 0.33 ± 0.11 e | 1.44 ± 0.09 c | 2.30 ± 0.15 a | 1.18 ± 0.04 d | 1.29 ± 0.07 c,d | 1.66 ± 0.11 b |
Asparagine | <LOQ d | 1.56 ± 0.21 c | 2.42 ± 0.25 b | 1.48 ± 0.30 c | 2.06 ± 0.26 b | 2.94 ± 0.26 a |
Aspartic acid | 0.95 ± 0.06 b | 2.40 ± 1.50 a | 2.47 ± 0.25 a | 1.09 ± 0.02 b | 1.38 ± 0.71 a,b | |
Methionine | 1.32 ± 0.14 b | 1.61 ± 0.02 b | 1.64 ± 0.05 b | 1.43 ± 0.07 b | 2.17 ± 0.19 a | 1.52 ± 0.39 b |
3-hydroxyproline | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Glutamic Acid | 1.60 ± 0.56 c | 4.50 ± 0.18 a | 5.09 ± 0.58 a | 3.20 ± 0.35 b | 3.52 ± 0.36 b | 3.42 ± 0.15 b |
Phenylalanine | 0.53 ± 0.13 d | 1.32 ± 0.05 c | 1.39 ± 0.14b c | 1.10 ± 0.04 c | 2.70 ± 0.34 a | 1.76 ± 0.34 b |
α-Amino adipic Acid | 1.03 ± 0.27 a | 0.68 ± 0.14 b | 0.72 ± 0.11 b | <LOQ d | 0.27 ± 0.08 c | 0.47 ± 0.14 b,c |
Glutamine | 4.28 ± 1.45 c | 5.63 ± 0.48 b,c | 8.01 ± 0.70 a | 6.63 ± 0.32 a,b | 7.26 ± 0.84 a | 7.95 ± 0.29 a |
Ornithine | 1.31 ± 0.05 b | 2.08 ± 0.22 a | 2.33 ± 0.33 a | 1.05 ± 0.03 b | 1.04 ± 0.22 b | 1.08 ± 0.0 b |
Lysine | 1.27 ± 0.05 | 2.02 ± 012 b | 2.09 ± 0.02 a,b | 2.17 ± 0.02 a,b | 2.26 ± 0.17 a | 2.24 ± 0.08 a |
Histidine | 1.64 ± 0.04 b,c | 1.82 ± 0.01 a,b,c | 1.92 ± 0.08 a | 1.75 ± 0.14 a,b,c | 1.62 ± 0.30 c | 1.89 ± 0.12 a,b |
Tyrosine | 0.70 ± 0.01 c | 0.82 ± 0.06 b,c | 0.69 ± 0.15 c | 0.94 ± 0.01 a,b | 0.81 ± 0.18 b,c | 1.03 ± 0.10 a |
Tryptophan | 0.98 ± 0.01 a | 1.07 ± 0.004 a | 1.07 ± 0.01 a | 1.03 ± 0.01 a | 1.12 ± 0.25 a | 1.05 ± 0.05 a |
Cysteine | ND | ND | ND | ND | ND | ND |
TOTAL | 30.05 ± 1.12 d | 41.17 ± 1.15 b | 51.22 ± 2.31 a | 38.18 ± 0.84 c | 42.01 ± 1.50 b | 42.96 ± 2.35 b |
Creatinine | 0.04 ± 0.004 | |||||
Fructose | ND e | 2.83 ± 0.01 d | 4.27 ± 0.12 b | 2.96 ± 0.04 c,d | 3.20 ± 0.01 c | 5.16 ± 0.40 a |
Glucose | 4.26 ± 0.03 b | 3.22 ± 0.02 c | 5.33 ± 0.32 a | 3.28 ± 0.04 c | 4.51 ± 0.06 b | 5.16 ± 0.12 a |
Sucrose | ND | ND | ND | ND | ND | ND |
Maltose | ND | ND | ND | ND | ND | ND |
Total sugar | 4.26 ± 0.03 e | 6.05 ± 0.01 d | 9.61 ± 0.44 b | 6.24 ± 0.07 d | 7.71 ± 0.06 c | 10.32 ± 0.52 a |
Treatments | Aminoimidazoazaarens (AIAs) | Amino Carbolines | |||||
---|---|---|---|---|---|---|---|
MeIQx | 4,8-DiMeIQx | PhIP | NH | H | AαC | Total HCAs | |
CTR | ND | ND | 1.22 ± 0.01 a | 141.64 ± 1.43 b | 6.27 ± 0.28 b | 0.63 ± 0.06 c | 149.76 ± 1.63 b |
TS | 5.25 ± 0.32 a | 8.23 ± 0.57 a | 0.18 ± 0.15 b | 314.00 ± 1.57 a | 14.99 ± 0.94 a | 1.97 ± 0.02 a | 344.62 ± 2.77 a |
AP | 1.29 ± 0.08 b | 5.93 ± 0.13 b | 0.06 ± 0.07 b,c | 134.16 ± 1.80 c | 3.98 ± 0.41 c | 1.57 ± 0.03 a | 147.42 ± 1.59 b |
AC | 1.78 ± 0.81 b | 3.72 ± 0.67 c | 0.07 ± 0.05 b,c | 40.60 ± 0.86 d | 2.43 ± 0.15 e | 0.84 ± 0.23 b | 49.44 ± 1.72 c |
SF | ND c | 4.00 ± 0.95 c | 0.01 ± 0.01 b,c | 31.55 ± 0.58 e | 3.69 ± 0.02 c,d | 0.53 ± 0.02 c | 39.79 ± 1.31 d |
GE | ND c | 1.68 ± 0.40 d | 0.06 ± 0.04 c | 11.93 ± 0.27 f | 3.00 ± 0.12 d,e | 0.08 ± 0.01 d | 16.75 ± 0.21 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsudin, S.; Selamat, J.; Sanny, M.; Jambari, N.N.; Sukor, R.; Praveena, S.M.; Khatib, A. The Inhibitory Effects of Heterotrigona Itama Honey Marinades on the Formation of Carcinogenic Heterocyclic Amines in Grilled Beef Satay. Molecules 2020, 25, 3874. https://doi.org/10.3390/molecules25173874
Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Praveena SM, Khatib A. The Inhibitory Effects of Heterotrigona Itama Honey Marinades on the Formation of Carcinogenic Heterocyclic Amines in Grilled Beef Satay. Molecules. 2020; 25(17):3874. https://doi.org/10.3390/molecules25173874
Chicago/Turabian StyleShamsudin, Sharina, Jinap Selamat, Maimunah Sanny, Nuzul Noorahya Jambari, Rashidah Sukor, Sarva Mangala Praveena, and Alfi Khatib. 2020. "The Inhibitory Effects of Heterotrigona Itama Honey Marinades on the Formation of Carcinogenic Heterocyclic Amines in Grilled Beef Satay" Molecules 25, no. 17: 3874. https://doi.org/10.3390/molecules25173874
APA StyleShamsudin, S., Selamat, J., Sanny, M., Jambari, N. N., Sukor, R., Praveena, S. M., & Khatib, A. (2020). The Inhibitory Effects of Heterotrigona Itama Honey Marinades on the Formation of Carcinogenic Heterocyclic Amines in Grilled Beef Satay. Molecules, 25(17), 3874. https://doi.org/10.3390/molecules25173874