Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics
Abstract
:1. Introduction
2. Triterpene Saponins and Their Bioactivities
2.1. Triterpene Saponins
2.2. Biological Activities
2.2.1. Hepatoprotective Activities
2.2.2. Anti-Inflammatory Activities
2.2.3. Antimicrobial and Antiviral Activities
2.2.4. Cytotoxic and Antitumor Activities
2.2.5. Other Activities
3. Solubilization Characteristics
3.1. Solubilization Characteristics of Glycyrrhiza
3.2. Solubilization Characteristics of GL (1)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Editorial Committee of Flora of China. Flora of China; Science Press: Beijing, China, 2010. [Google Scholar]
- Li, N.; Zhou, T.; Wu, F.; Wang, R.; Zhao, Q.; Zhang, J.Q.; Yang, B.C.; Ma, B.L. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): Drug metabolizing enzymes, transporters, and beyond. Expert Opin. Drug Metab. Toxicol. 2019, 15, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.Y.; Sun, R.; Liu, R.P. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharm. Res. 2019, 144, 210–226. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.M.; Shang, E.X.; Zhao, J.L.; Fan, X.S.; Duan, J.A.; Qian, D.W.; Tao, W.W.; Tang, Y.P. Data mining and frequency analysis for licorice as a "Two-Face" herb in Chinese Formulae based on Chinese Formulae Database. Phytomedicine 2014, 21, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Sudo, H. Economic importance of licorice. Plant Biotechnol. 2009, 26, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, D.; Curcio, S.; Cindio, B. Optimal design of single-screw extruder for liquorice candy production: A rheology based approach. J. Food Eng. 2001, 48, 33–44. [Google Scholar] [CrossRef]
- Güçlü-Ustündağ, O.; Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Isbrucker, R.A.; Burdock, G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharm. 2006, 46, 167–192. [Google Scholar] [CrossRef]
- Wang, C.C.; Chen, L.H.; Xu, C.Q.; Shi, J.J.; Chen, S.Y.; Tan, M.X.; Chen, J.L.; Zou, L.S.; Chen, C.H.; Liu, Z.X.; et al. Comprehensive review for phytochemical, pharmacological, and biosynthesis studies on Glycyrrhiza spp. Am. J. Chin. Med. 2020, 48, 17–45. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother. Res. 2015, 29, 1868–1886. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008, 22, 709–724. [Google Scholar]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozi, P.; Abuduwaili, A.; Ma, S.J.; Bao, X.W.; Xu, H.Z.X.; Zhu, J.F.; Yadikar, N.; Wang, J.; Yang, X.J.; Yili, A. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza. Int. J. Biol. Macromol. 2020, 145, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Luan, X.; Zheng, M.; Tian, X.H.; Zhao, J.; Zhang, W.D.; Ma, B.L. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics 2020, 12, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.Y.; Zhang, J.H.; Wang, M.T. Studies on the saponins from the root of Glycyrrhiza uralensis Fisch. Acta Pharm. Sin. 1986, 21, 510–515. [Google Scholar]
- Amagaya, S.; Sugishita, E.; Ogihara, Y.; Ogawa, S.; Okada, K.; Aizawa, T. Comparative studies of the stereoisomers of glycyrrhetinic acid on anti-inflammatory activities. J. Pharm. 1984, 7, 923–928. [Google Scholar] [CrossRef]
- Kitagawa, I.; Hori, K.; Sakagami, M.; Zhou, J.L.; Yoshikawa, M. Saponin and sapogenol. XLVIII. On the constituents of the roots of Glycyrrhiza uralensis Fischer from northeastern China. (2). Licorice-saponins D3, E2, F3, G2, H2, J2, and K2. Chem. Pharm. Bull. 1993, 41, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Baltina, L.A.; Kunert, O.; Fatykhov, A.A.; Kondratenko, R.M.; Spirikhin, L.V.; Baltina, L.A., Jr.; Galin, F.Z.; Tolstikov, G.A.; Haslinger, E. High-resolution 1H and 13C NMR of glycyrrhizic acid and its esters. Chem. Nat. Comp. 2005, 41, 432–435. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Wei, J.H.; Fang, S.Q.; Tang, Y.P.; Cheng, H.B.; Wang, T.L.; Li, C.Y.; Peng, G.P. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflate. Molecules 2015, 20, 6273–6283. [Google Scholar] [CrossRef]
- Bai, M.; Yao, G.D.; Ren, Q.; Li, Q.; Liu, Q.B.; Zhang, Y.; Wang, X.B.; Huang, X.X.; Song, S.J. Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Ind. Crop. Prod. 2018, 125, 50–58. [Google Scholar] [CrossRef]
- Kitagawa, I.; Zhou, J.L.; Sakagami, M.; Taniyama, T.; Yoshikawa, M. Licorice-saponins A3, B2, C2, D3, and E2, five new oleanene-type triterpene oligoglycosides from Chinese Glycyrrhizae Radix. Chem. Pharm. Bull. 1988, 36, 3710–3713. [Google Scholar] [CrossRef] [Green Version]
- Schmid, C.; Dawid, C.; Peters, V.; Hofmann, T. Saponins from European licorice roots (Glycyrrhiza glabra). J. Nat. Prod. 2018, 81, 1734–1744. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, I.; Zhou, J.L.; Sakagami, M.; Uchida, E.; Yoshikawa, M. Licorice-saponins F3, G2, H2, J2, and K2, five new oleanene-triterpene oligoglycosides from the root of Glycyrrhiza uralensis. Chem. Pharm. Bull. 1991, 39, 244–246. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, I.; Hori, K.; Uchida, E.; Chen, W.Z.; Yoshikawa, M.; Ren, J.L. Saponin and sapogenol. L. On the constituents of the roots of Glycyrrhiza uralensis Fischer from Xinjiang, China. Chemical structures of licorice-saponin L3 and isoliquiritin apioside. Chem. Pharm. Bull. 1993, 41, 1567–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, I.; Sakagami, M.; Hashiuchi, F.; Zhou, J.L.; Yoshikawa, M.; Ren, J.L. Apioglycyrrhizin and araboglycyrrhizin, two new sweet oleanene-type triterpene oligoglycosides from the root of Glycyrrhiza inflata. Chem. Pharm. Bull. 1989, 37, 551–553. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Si, L.L.; Ji, S.; Wang, H.; Fang, X.M.; Yu, L.Y.; Li, R.Y.; Liang, L.N.; Zhou, D.M.; Ye, M. Uralsaponins M–Y, Antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis. J. Nat. Prod. 2014, 77, 1632–1643. [Google Scholar] [CrossRef]
- Li-Yang, J.W.; Nakajima, J.; Kimura, N.; Saito, K.; Seo, S. Oleanane-type triterpene glycosides from Glycyrrhiza uralensis. Nat. Prod. Commun. 2007, 2, 243–248. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Qi, L.W.; Cui, X.B.; Peng, G.P.; Peng, Y.B.; Ren, M.T.; Cheng, X.L.; Li, P. Oleanane-type triterpene glucuronides from the roots of Glycyrrhiza uralensis Fischer. Planta Med. 2010, 76, 1457–1463. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.F.; Luo, J.G.; Kong, L.Y. Simultaneous separation of triterpenoid saponins and flavonoid glycosides from the roots of Glycyrrhiza uralensis Fisch by pH-zone-refining counter-current chromatography. J. Sep. Sci. 2013, 36, 3295–3301. [Google Scholar] [CrossRef]
- Wei, J.H.; Zheng, Y.F.; Li, C.Y.; Tang, Y.P.; Peng, G.P. Bioactive constituents of oleanane-type triterpene saponins from the roots of Glycyrrhiza glabra. J. Asian Nat. Prod. Res. 2014, 16, 1044–1053. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Eight new triterpenoid saponins with antioxidant activity from the roots of Glycyrrhiza uralensis Fisch. Fitoterapia 2019, 133, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, S.S.; Li, W.; Wang, Y.Q.; Xue, X.Y.; Liang, X.M. A New oleanane-type triterpene glycoside in Glycyrrhiza uralensis. World Sci. Technol. 2009, 11, 253–256. [Google Scholar]
- Zhu, X.M.; Di, Y.T.; Peng, S.L.; Wang, M.K.; Ding, L.S. Chemical constituents from root of Glycyrrhiza uralensis. Chin. Tradit. Herb. Drugs 2003, 34, 198–201. [Google Scholar]
- Leng, J.; Zhu, Y.X.; Chen, L.L.; Wang, S.F. Two new triterpenoid saponins from roots and rhizomes of Glycyrrhiza uralensis. Chin. Tradit. Herb. Drugs 2015, 46, 1576–1582. [Google Scholar]
- Shou, Q.Y.; Jiao, P.; Hong, M.; Jia, Q.; Prakash, I.; Hong, S.; Wang, B.; Bechman, A.; Ma, G. Triterpenoid saponins from the roots of Glycyrrhiza glabra. Nat. Prod. Commun. 2019, 14, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Zapesochnaya, G.G.; Zvonkova, E.N.; Kurkin, V.A.; Kazakova, E.V.; Pervykh, L.N.; Sheichenko, B.I.; Bykov, V.A. Some properties of glycyrrhizic acid. Chem. Nat. Compd. 1994, 30, 720–726. [Google Scholar] [CrossRef]
- Wu, X.M.; Lu, J.; Ru, R.P. Study of epimeric 18-glycyrrhizic acid. Chin. Pharm. J. 1993, 4, 215–218. [Google Scholar]
- Nakamura, T.; Fujii, T.; Ichihara, A. Enzyme leakage dueto change of membrane permeability of primary cultured rat hepatocytes treated with various hepatotoxins and its prevention by glycyrrhizin. Cell Biol. Toxicol. 1985, 1, 285–295. [Google Scholar] [CrossRef]
- Sato, H.; Goto, W.; Yamamura, J.; Kurokawa, M.; Kageyama, S.; Takahara, T.; Akiharu Watanabe, A.; Shiraki, K. Therapeutic basis of glycyrrhizin on chronichepatitis B. Antivir. Res. 1996, 30, 171–177. [Google Scholar] [CrossRef]
- Tsuruoka, N.; Abe, K.; Wake, K.; Takata, M.; Hatta, A.; Sato, T.; Inoue, H. Hepatic protection by glycyrrhizin and inhibition of iNOS expression in concanavalin A-induced liver injury in mice. Inflamm. Res. 2009, 58, 593–599. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, S.W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.M. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull. 2007, 30, 1898–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Nnane, I.P.; Cheng, T.Y. The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon 1999, 37, 1259–1270. [Google Scholar] [CrossRef]
- Nagai, T.; Egashira, T.; Kudo, Y.; Yamanaka, Y.; Shimada, T. Attenuation of dysfunction in the ischemia reperfused liver by glycyrrhizin. Jpn. J. Pharm. 1992, 58, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Orazizadeh, M.; Fakhredini, F.; Mansouri, E.; Khorsandi, L. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem. Biol. Interact. 2014, 220, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Qi, Y.; Cai, R.L.; Liu, B.; Song, Y.; Xie, C. Studies on the anti-inflammatory mechanism of total saponins of Radix Glycyrrhiza in vitro. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 110–113. [Google Scholar]
- Wang, X.R.; Hao, H.G.; Chu, L. Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. Microb. Pathog. 2017, 109, 110–113. [Google Scholar] [CrossRef]
- Akamatsu, H.; Komura, J.; Asada, Y.; Niwa, Y. Mechanism of anti-inflammatory action of glycyrrhizin: Effects on neutrophil functions including reactive oxygen species generation. Planta Med. 1991, 57, 119–121. [Google Scholar] [CrossRef]
- Li, Y.; Sun, F.B.; Jing, Z.H.; Wang, X.H.; Hua, X.M.; Wan, L. Glycyrrhizic acid exerts anti-inflammatory effect to improve cerebral vasospasm secondary to subarachnoid hemorrhage in a rat model. Neurol. Res. 2017, 39, 727–732. [Google Scholar] [CrossRef]
- Pang, H.G.; Huang, T.Q.; Song, J.N.; Li, D.D.; Zhao, Y.L.; Ma, X.D. Inhibiting HMGB1 with glycyrrhizic acid protects brain injury after DAI via its anti-inflammatory effect. Mediat. Inflamm. 2016, 3, 4569521–4569529. [Google Scholar] [CrossRef] [Green Version]
- Moghimipour, E.; Ameri, A.; Handali, S.; Ramezani, Z.; Azemi, M.E.; Sadeghi-Nejad, B. In-vitro evaluation of antibacterial activity of Glycyrrhiza glabra and Acanthopyllum squarrusom total saponins. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 764–768. [Google Scholar]
- Wang, L.Q.; Yang, R.; Yuan, B.C.; Liu, Y.; Liu, C.S. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, M.; Shigeta, S. Antiviral activity of glycyrrhizin against varicella-zoster virus in vitro. Antivir. Res. 1987, 7, 99–107. [Google Scholar] [CrossRef]
- Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem. 2005, 48, 1256–1259. [Google Scholar] [CrossRef]
- Wolkerstorfer, A.; Kurz, H.; Bachhofner, N.; Szolar, O.H. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antivir. Res. 2009, 83, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Zhao, T.T.; Lu, N.; Yang, Y.A.; Zhu, H.L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev. Med. Chem. 2019, 19, 826–832. [Google Scholar] [CrossRef]
- Murck, H. Symptomatic protective action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front. Immunol. 2020, 11, 1239. [Google Scholar] [CrossRef]
- Deng, Q.P.; Wang, M.J.; Zeng, X.; Chen, G.G.; Huang, R.Y. Effects of glycyrrhizin in a mouse model of lung adenocarcinoma. Cell Physiol. Biochem. 2017, 41, 1383–1392. [Google Scholar] [CrossRef]
- Chan, H.T.; Chan, C.; Ho, J.W. Inhibition of glycyrrhizic acid on aflatoxin B1-induced cytotoxicity in hepatoma cells. Toxicology 2003, 188, 211–217. [Google Scholar] [CrossRef]
- Bonafé, G.A.; Dos Santos, J.S.; Ziegler, J.V.; Umezawa, K.; Ribeiro, M.L.; Rocha, T.; Ortega, M.M. Growth Inhibitory Effects of dipotassium Glycyrrhizinate in glioblastoma cell lines by targeting MicroRNAs through the NF-κB signaling pathway. Front. Cell. Neurosci. 2019, 13, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Akman, T.; Guven, M.; Aras, A.B.; Ozkan, A.; Sen, H.M.; Okuyucu, A.; Kalkan, Y.; Sehitoglu, I.; Silan, C.; Cosar, M. The neuroprotective effect of glycyrrhizic acid on an experimental model of focal cerebral ischemia in rats. Inflammation 2015, 38, 1–8. [Google Scholar] [CrossRef]
- Ojha, S.; Javed, H.; Azimullah, S.; Abul Khair, S.B.; Haque, M.E. Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of parkinson’s disease. Neurotox. Res. 2015, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.J.; Yin, A.C. Therapeutic effects of glycyrrhizic acid. Nat. Prod. Commun. 2013, 8, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, R.; Hill, I.D.; Hutton, C.; Underwood, D.J. Clinical trial of a triterpenoid liquorice compound in gastric and duodenal ulcers. Lancet 1962, 2, 793–796. [Google Scholar] [CrossRef]
- Sidhu, P.; Shankargouda, S.; Rath, A.; Hesarghatta Ramamurthy, P.; Fernandes, B.; Kumar Singh, A. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med. 2020, 11, 82–88. [Google Scholar] [CrossRef]
- Fouladi, S.; Masjedi, M.; Ghasemi, R.; Hakemi, M.G.; Eskandari, N. The in vitro impact of glycyrrhizic acid on CD4+ T lymphocytes through OX40 receptor in the patients with allergic rhinitis. Inflammation 2018, 41, 1690–1701. [Google Scholar] [CrossRef] [PubMed]
- Chandel, R.S.; Rastogi, R.P. Triterpenoid saponins and sapogenins: 1973–1978. Phytochemistry 1980, 19, 1889–1908. [Google Scholar] [CrossRef]
- Ralla, T.; Salminen, H.; Braun, K.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Investigations into the structure-function relationship of plant-based surfactant glycyrrhizin: Interfacial behavior & emulsion formation. LWT 2019, 120, 108910. [Google Scholar]
- Cai, S.Y.; Lv, S.W.; Wang, Y.H.; Guo, Y.Y.; Li, Y.J. Solubility and apparent oil/ water partition coefficient of glycyrrhizin and pachymic acid. Inf. Tradit. Chin. Med. 2012, 29, 118–121. [Google Scholar]
- Shi, K.L.; Yang, L.L.; Tan, S.F. Compatibility and solubilization of Glycyrrhiza uralensis. China J. Chin. Mater. Med. 1990, 15, 32–33. [Google Scholar]
- Meng, X.Y.; Pi, Z.F.; Song, F.R.; Liu, Z.Q.; Liu, S.Y. Changes in the effective compounds and the anti-inflammatory activity before and after the decoction of Ephedra and Liquorite. Chin. J. Appl. Chem. 2009, 26, 801–806. [Google Scholar]
- Nie, J.; Chen, S.J.; Gao, G.; Yang, Q.Q.; Han, J.J.; Wang, Y.J.; Li, Q. Effect of Epimedium brevicornu Maxim and Glycyrrhiza compatibility application on the content of icariin. Northwest Pharm. J. 2009, 34, 295–297. [Google Scholar]
- Han, G.; Yan, H.M.; Li, L.L.; Zhang, W.G.; Jin, G.C. Effects of Radix Glycyrrhizae uralensis on extractive rate of curcumin from curcuma longa. West China J. Pharm. Sci. 2007, 22, 652–653. [Google Scholar]
- Li, M. A Preliminary Study on the Solubilization of Glycyrrhizae Radix et Rhizoma. Sci. Brief. 1984, 2, 37. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD7984&filename=ZCYA198402028&uid=WEEvREcwSlJHSldSdmVqM1BLUWdMQ2w4MnNOOXZGYVc0Rmc2SGZ5M0ZZaz0 (accessed on 25 August 2020).
- Chen, L.; Xu, R.C.; Zou, W.Q.; Yang, M. Investigation of solubilization effect from compatibility of Glycyrrhiza uralensis-Baphicacanthus cusia. Chin. J. Exp. Tradit. Med. Formulae 2012, 18, 17–19. [Google Scholar]
- Li, Y.; Yang, Y.Y.; Zhang, Z.Q.; Xie, J.L.; Wang, M. Principle of active component dissolution in extract of different compatibility proportions of Paeoniae Radix Alba and Glycyrrhizae Radix et Rhizoma. Chin. Tradit. Herb. Drugs. 2013, 44, 291–295. [Google Scholar]
- Du, W. Study on the solubility of Glycyrrhizae Radix et Rhizoma. Hunan Guid. J. Tcm P 1996, 12, 32–33. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD9697&filename=HNZB606.023&uid=WEEvREcwSlJHSldSdmVqM1BLUWdMQ2w4MnNOOXZGYVc0Rmc2SGZ5M0ZZaz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MDYwMjR6aEFVNGpoNE9YNlRySDAzZWJDVVJiS2RZZWRyRXlIaFd3PT1MU1BSYkxXNEdNL01yWXdxRjU0T2ZnZzU= (accessed on 25 August 2020).
- Lv, Z.Y.; Shan, C.; Yang, Y.W.; Gu, X.M.; Chen, J.; Wei, Y. Effect of baicalin in licorice by different compatibility proportion on the dissolution of baicalin. Asia-Pac. Tradit. Med. 2019, 15, 67–69. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2019&filename=YTCT201910020&uid=WEEvREcwSlJHSldSdmVqM1BLUWdMQ2w4MnNOOXZGYVc0Rmc2SGZ5M0ZZaz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MTQ2MjJDVVI3cWZiK1JwRnkzZ1VMckpQRG5JZXJHNEg5ak5yNDlIWklSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnI= (accessed on 30 October 2019).
- Lv, S.W.; Duan, J.X.; Guo, Y.Y.; Sun, S.; Kuang, H.X. Research progress on the mechanism of formula compatibility of Glycyrrhizae Radix et Rhizoma. Chin. Tradit. Pat. Med. 2015, 37, 2022–2025. [Google Scholar]
- Wang, X.Y.; Zhang, H.; Chen, L.L.; Shan, L.H.; Fan, G.W.; Gao, X.M. Liquorice, a unique "guide drug" of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013, 150, 781–790. [Google Scholar] [CrossRef]
- Ma, H.Y.; Deng, Y.J.; Ma, Q.; Wang, J.Y.; Xu, R.C. Review of research on Gancao. Pharma. Clin. Chin. Mater. Med. 2018, 1, 59–62. [Google Scholar]
- Du, W. Solubilization of glycyrrhizin on Ben Lamge Granules. Chin. J. Hosp. Pharm. 1997, 17, 314–315. [Google Scholar]
- Sasaki, Y.; Mizutani, K.; Kasai, R.; Tanaka, O. Solubilizing properties of glycyrrhizin and its derivatives: Solubilization of saikosaponin-a, the saponin of Bupleuri Radix. Chem. Pharm. Bull. 1988, 36, 3491–3495. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Yang, X.; Wang, B.H.; Shi, X.Y.; Wang, Y.; Li, J.; Shao, L.; Yang, B.B.; Li, P. Solubilizing effect of glycyrrhizic acid on baicalin. J. Beijing Univ. Tradit. Chin. Med. 2014, 37, 620–624. [Google Scholar]
- Yang, X.; Wang, Y.; Wang, B.H.; Shi, X.Y.; Lu, B.; Shao, L.; Li, P.; Yang, B.B. Research of the solubilization of glycyrrhizic acid to puerarin. Tianjin J. Tradit. Chin. Med. 2015, 32, 304–307. [Google Scholar]
- Liu, X.W.; Zhuo, H.Y.; Xu, X.; Li, W.; Zou, L.; Song, Y. Study on puerarin dispersible tablet based on solubilization effect of glycyrrhizic acid. China J. Chin. Mater. Med. 2019, 44, 1350–1356. [Google Scholar]
- Petrova, S.S.; Schlotgauer, A.A.; Kruppa, A.I.; Leshina, T.V. Self-association of glycyrrhizic acid. NMR study. Z. Phys. Chem. 2016, 231, 1–17. [Google Scholar] [CrossRef]
- Matsuoka, K.; Miyajima, R.; Ishida, Y.; Karasawa, S.; Yoshimura, T. Aggregate formation of glycyrrhizic acid. Colloids Surf. A Phys. Eng. Asp. 2016, 500, 112–117. [Google Scholar] [CrossRef]
- Su, X.T.; Wu, L.; Hu, M.M.; Dong, W.X.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharm. 2017, 95, 670–678. [Google Scholar] [CrossRef]
- Polyakov, N.E.; Leshina, T.V. Glycyrrhizic acid as a novel drug delivery vector synergy of drug transport and efficacy. Open Conf. Proc. J. 2011, 2, 64–69. [Google Scholar] [CrossRef]
- Shi, L.; Tang, C.; Yin, C. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials 2012, 30, 7594–7604. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.F.; Wang, J.L.; Tu, P.F. Research on preparation process of andrographolide-glycyrrhizic acid polymeric micelles. China J. Chin. Mater. Med. 2018, 43, 79–85. [Google Scholar]
- Deng, Y.G.; Lv, X.L.; Zhu, Y.L.; Zhang, S.C.; Liu, S.J.; Zhao, B.X.; Li, G.F. Preparation and anti-hepatic fibrosis activity of evodiamine-glycrrhizic acid micelles using glycyrrhizic acid as the drug carrier. China J. Chin. Mater. Med. 2020. Available online: http://kns.cnki.net/kcms/detail/11.2272.R.20200428.1605.004.html (accessed on 25 August 2020).
- Yang, F.H.; Liu, X.D.; Liu, S.J.; Liang, Q.Y.; Cai, Y.; Zhang, Y.Q.; Li, G.F. Solubilization effects of glycyrrhizic acid on paclitaxel. Chin. J. Hosp. L Pharm. 2016, 36, 1873–1877. [Google Scholar]
- Wan, Z.L.; Sun, Y.G.; Ma, L.L.; Yang, X.Q.; Guo, J.; Yin, S.W. Responsive emulsion gels with tunable properties formed by self-assembled nanofibrils of natural saponin glycyrrhizic acid for oil structuring. J. Agric. Food Chem. 2017, 65, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Origin | References |
---|---|---|---|
1 | glycyrrhizin (glycyrrhizic acid, uralsaponin A or 18β-glycyrrhizic acid) | a,b,c | [16,17,18,19,20] |
2 | uralsaponin B | a,b | [16,21] |
3 | licorice-saponin A3 | a,c | [20,22] |
4 | licorice-saponin B2 | a,b | [22,23] |
5 | licorice-saponin C2 | a,b | [22,23] |
6 | licorice-saponin D3 | a | [22] |
7 | licorice-saponin E2 | a,c | [20,22] |
8 | licorice-saponin F3 | a | [24] |
9 | licorice-saponin G2 | a,b,c | [20,23,24] |
10 | licorice-saponin H2 | a,b | [23,24] |
11 | licorice-saponin J2 | a,b | [23,24] |
12 | licorice-saponin K2 | a,b | [21,24] |
13 | licorice-saponin L3 | a | [25] |
14 | 18α-glycyrrhizic acid | a,b | [17] |
15 | apioglycyrrhizin | b,c | [23,26] |
16 | araboglycyrrhizin | a,b,c | [23,26,27] |
17 | 22β-acetoxylglycyrrhizin | a,c | [20,28] |
18 | 3β-O-[β-d-glucuronopyranosyl-(1→2)-β-d-glucuronopyranosyl]-glycyrretol | a | [28] |
19 | 3β-O-[β-d-glucuronopyranosyl-(1→2)-β-d-glucuronopyranosyl]- olean-9,12-diene-30-oic acid | a | [28] |
20 | uralsaponin C | a | [29] |
21 | uralsaponin D | a,c | [20,29] |
22 | uralsaponin E | a | [29] |
23 | uralsaponin F | a | [29] |
24 | 3-O-[β-d-glucuronopyranosyl-(1→2)-β-d-galactopyranosyl]glycyrrhetic acid | a | [30] |
25 | licorice-saponin M3 (uralsaponin T) | a,b | [27,31] |
26 | licorice-saponin N4 | a,b | [31,32] |
27 | licorice-saponin O4 | b | [31] |
28 | uralsaponin M | a | [27] |
29 | uralsaponin N | a | [27] |
30 | uralsaponin O | a | [27] |
31 | uralsaponin P | a | [27] |
32 | uralsaponin Q | a | [27] |
33 | uralsaponin R | a | [27] |
34 | uralsaponin S | a | [27] |
35 | uralsaponin U | a | [27] |
36 | uralsaponin V | a,b | [21,27] |
37 | uralsaponin W | a | [27] |
38 | uralsaponin X | a | [27] |
39 | uralsaponin Y | a | [27] |
40 | 22β-acetoxyl-glycyrrhaldehyde | a,c | [20,33] |
41 | 3-O-β-d-glucuronopyranosyl-glycyrrhetinic acid | a,b | [21,27] |
42 | 3-O-[β-d-(6-methyl)glucuro-nopyranosyl (1→2)-d-glucurono-pyranosyl]-24-hydroxyglabrolide | a | [34] |
43 | licorice-saponin P2 | c | [20] |
44 | licorice-saponin Q2 | c | [20] |
45 | macedonoside A | b,c | [20,21] |
46 | 24-hydroxy-licorice-saponin E2 | c | [20] |
47 | macedonoside E | a | [35] |
48 | 22β-acetyl-uralsaponin C | a | [35] |
49 | licorice saponin M1 | b | [21] |
50 | licorice saponin M2 | b | [21] |
51 | licorice saponin M3 | b | [21] |
52 | licorice saponin M4 | b | [21] |
53 | 30-hydroxyglycyrrhizin | b | [23] |
54 | glycyrrhizin-20-methanoate | b | [23] |
55 | 24-hydroxyglucoglycyrrhizin | b | [23] |
56 | rhaoglycyrrhizin | b | [23] |
57 | 11-deoxorhaoglycyrrhizin | b | [23] |
58 | rhaoglucoglycyrrhizin | b | [23] |
59 | rhaogalactoglycyrrhizin | b | [23] |
60 | 11-deoxo-20α-glycyrrhizin | b | [23] |
61 | 20α-galacturonoylglycyrrhizin | b | [23] |
62 | 20α-rhaoglycyrrhizin | b | [23] |
63 | glyuralsaponin A | a | [32] |
64 | glyuralsaponin B | a | [32] |
65 | glyuralsaponin C | a | [32] |
66 | glyuralsaponin D | a | [32] |
67 | glyuralsaponin E | a | [32] |
68 | glyuralsaponin F | a | [32] |
69 | glyuralsaponin G | a | [32] |
70 | glyuralsaponin H | a | [32] |
71 | glabasaponin A | b | [36] |
72 | glabasaponin B | b | [36] |
73 | glabasaponin C | b | [36] |
74 | glabasaponin D | b | [36] |
75 | glabasaponin E | b | [36] |
76 | glabasaponin F | b | [36] |
77 | glabasaponin G | b | [36] |
No. | Compound | Activity | References | ||
---|---|---|---|---|---|
Property | Method | Major Findings | |||
1 | glycyrrhizin (glycyrrhizic acid, uralsaponin A or 18β-glycyrrhizic acid) | Hepatoprotective activities | In vitro—primary rat hepatocytes injured by d-galactosamine (d-GalN) | Lower alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) levels | [20] |
PLA2 inhibitory potency | IC50 = 9.3 μM | [20] | |||
In vitro—primary cultured rat hepatocytes induced by CCl4 | Prevent soluble enzyme release | [39] | |||
In vitro—PLC/PRF/5 cells | Modify the expression of hepatitis B virus (HBV)-related antigens on the hepatocytes and suppress sialylation of HBsAg | [40] | |||
In vivo—BALB/c mice | Suppress increases in AST and ALT, inhibit inducible nitric oxide synthase (iNOS) mRNA expression, and reduce protein and cell infiltration and the degeneration of hepatocytes | [41] | |||
In vivo—ICR mice | Alleviate CCl4-induced liver injury | [42] | |||
In vivo—Sprague Dawley rats | Exhibit protective effect on retrorsine-induced liver damage | [43] | |||
In vivo—Wistar rats | Provide partial protection of the liver against ischemia-reperfusion damage | [44] | |||
In vivo—Wistar rats | Protect against NTiO2-induced hepatotoxicity | [45] | |||
Anti-inflammatory activities | In vitro—lipopolysaccharide (LPS)-stimulated mouse endometrial epithelial cells (MEEC) | Inhibit LPS-induced inflammatory response by inhibiting TLR4 signaling pathway | [47] | ||
In vitro—neutrophil | Inhibit reactive oxygen species (ROS) generation by neutrophils | [48] | |||
In vivo—Sprague Dawley rats | Inhibit HMGB1 expression and subsequent production of inflammatory cytokines to prevent cerebral vasospasm (CVS) following subarachnoid hemorrhage (SAH) | [49] | |||
In vivo—SD rats | Alleviate brain injury after diffuse axonal injury (DAI) via its anti-inflammatory effects | [50] | |||
Antimicrobial and antiviral activities | In vitro | Inhibit varicella zoster virus (VZV) | [53] | ||
In vitro | Inhibit severe acute respiratory syndrome coronavirus (SARS-CoV) replication | [54] | |||
In vitro | Inhibited influenza A virus (IAV) uptake into the cell | [55] | |||
In vitro | Reduce the severity of an infection with COVID-19 at the two stages of the COVID-19 induced disease process, 1. To block the number of entry points and 2. provide an ACE2 independent anti-inflammatory mechanism. | [57] | |||
The commercial NA inhibitory screening kit | Possess moderate influenza NA inhibitory activity | [31] | |||
Cytotoxic and antitumor activities | In vivo—tumor-bearing mice | Reduce expression of TxAS, as well as proliferating cell nuclear antigen (PCNA), and rescue liver and kidney damage | [58] | ||
In vitro—HepG2 | Display protective effects against Aflatoxin B1 (AFB1)-induced cytotoxicity | [59] | |||
Other activities | - | 1. Possess immunomodulatory, neuroprotective effects, and antioxidant activities; 2. Bronchitis, peptic ulcers, skin diseases, and oral diseases; 3. Allergic rhinitis | [56,61,62,63,64,65,66] | ||
3 | licorice-saponin A3 | Antimicrobial and antiviral activities | The commercial NA inhibitory screening kit | Possess moderate influenza NA inhibitory activity | [31] |
9 | licorice-saponin G2 | Hepatoprotective activities | In vitro—primary rat hepatocytes injured by d-GalN | Lower ALT and AST levels | [20] |
PLA2 inhibitory potency | IC50 = 16.9 μM | [20] | |||
Antimicrobial and antiviral activities | The commercial NA inhibitory screening kit | Possess moderate influenza NA inhibitory activity | [31] | ||
17 | 22β-acetoxylglycyrrhizin | Hepatoprotective activities | In vitro—primary rat hepatocytes injured by d-GalN | Lower ALT and AST levels | [20] |
PLA2 inhibitory potency | IC50 = 27.1 μM | [20] | |||
Antimicrobial and antiviral activities | In vitro—Madin–Darby canine kidney (MDCK) cells | Inhibit influenza virus A/WSN/33 (H1N1) | [27] | ||
The commercial NA inhibitory screening kit | Possess moderate influenza NA inhibitory activity | [31] | |||
21 | uralsaponin D | Hepatoprotective activities | PLA2 inhibitory potency | IC50 = 32.2 μM | [20] |
25 | licorice-saponin M3(uralsaponin T) | Antimicrobial and antiviral activities | In vitro—MDCK cells | Inhibit influenza virus A/WSN/33 (H1N1) | [27] |
The commercial NA inhibitory screening kit | Possess moderate influenza NA inhibitory activity | [31] | |||
28–39 | uralsaponins M–Y | Antimicrobial and antiviral activities | In vitro—MDCK cells | Uralsaponin M (28) and uralsaponin S (34) exhibited inhibitory activities against influenza virus A/WSN/33 (H1N1) | [27] |
44–45 | licorice-saponin Q2 (44) macedonoside A (45) | Hepatoprotective activities | In vitro—primary rat hepatocytes injured by d-GalN | Lower ALT and AST levels | [20] |
PLA2 inhibitory potency | IC50 = 3.6 μM (44) and 6.9 μM (45) | [20] | |||
63–70 | glyuralsaponins A–H | Hepatoprotective activities | MDA colorimetric assay | Glyuralsaponin B (64) and glyuralsaponin H (70) exhibited moderate antioxidant activities against Fe2+/cysteine-induced liver microsomal lipid peroxidation | [32] |
No. | Name | TCM Formulae/TCM/Component | Characteristics | Major Findings | References |
---|---|---|---|---|---|
1 | glycyrrhiza | sijunzi decoction, huangqi dazao decoction, baishao gancao decoction | Glycyrrhiza has solubilization effects in three traditional Chinese medicine (TCM) formulae | The solubilizing components in glycyrrhiza are triterpene saponins | [70] |
2 | ephedra | The contents of GL (1), ephedrine, and methephedrine et al. all increase | - | [71] | |
3 | epimedium | Icariin in epimedium increases | - | [72] | |
4 | curcuma longa | The extractive rate of curcumin double | GL (1) is the main surfactant | [73] | |
5 | codonopsis, poria, atractylodes, Baphicacanthus cusia, Paeoniae Radix Alba, Isatidis Radix, and Scutellaria baicalensis | Glycyrrhiza can increase the contents of active ingredients in these TCM | GL (1) is the main surfactant | [74,75,76,77,78] | |
6 | Schisandra chinensis | No solubilization effects | One of the possible factors affecting the solubilization is some other crude drugs | [70] | |
7 | GL (1) | saikosaponin-a | The contents of saikosaponin-a increase | Solubilizing effect is due to GL (1) | [83] |
8 | Ben Lamge granules | The solubility of Ben Lamge granules increases | 1. The surface tension of GL (1) decreases; 2. GL (1) exists in micelles in aqueous solution. | [82] | |
9 | baicalin | The dissolution rate of baicalin increases | - | [84] | |
10 | pueraria | The solubility of pueraria increases | Another possible factor affecting the solubilization is the pH value of the solution | [85] | |
11 | pachymic acid | Increase the solubility of pachymic acid | Improve the bioavailability of pachymic acid | [69] | |
12 | Puerarin-glycyrrhizic acid dispersible tablets | Improve the dissolution of puerarin | GL (1) possesses solubilization effect | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Liu, B.; Li, T.; Wu, Q.; Xu, Z.; Gu, Y.; Li, W.; Wang, P.; Ma, T.; Lei, H. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules 2020, 25, 3904. https://doi.org/10.3390/molecules25173904
Li F, Liu B, Li T, Wu Q, Xu Z, Gu Y, Li W, Wang P, Ma T, Lei H. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules. 2020; 25(17):3904. https://doi.org/10.3390/molecules25173904
Chicago/Turabian StyleLi, Feifei, Bin Liu, Tong Li, Qianwen Wu, Zhiyong Xu, Yuhao Gu, Wen Li, Penglong Wang, Tao Ma, and Haimin Lei. 2020. "Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics" Molecules 25, no. 17: 3904. https://doi.org/10.3390/molecules25173904
APA StyleLi, F., Liu, B., Li, T., Wu, Q., Xu, Z., Gu, Y., Li, W., Wang, P., Ma, T., & Lei, H. (2020). Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules, 25(17), 3904. https://doi.org/10.3390/molecules25173904