Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review
Abstract
:1. Introduction
2. Basic Characteristics of Cinnamon and Its Chemical Composition
3. Antimicrobial Effect of Cinnamon EO and Cinnamon Extracts against Oral Pathogens
3.1. Antimicrobial Effect against Caries Pathogens
3.2. Antifungal Activity of Cinnamon EO and Cinnamon Extracts
3.3. Antimicrobial Effect against Endopathogens
3.4. Clinical Trials
3.5. Other Studies against Oral Pathogens
4. Main Constituents of Cinnamomum spp. and Their Antibacterial Properties against Oral Pathogens
4.1. Cinnamaldehyde
4.2. Eugenol
4.3. Linalool
4.4. β-Caryophyllene
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Kuang, X.; Chen, V.; Xu, X. Novel approaches to the control of oral microbial biofilms. BioMed Res. Int. 2018, 2018, 6498932. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Worthington, H.V.; Parnell, C.; Harding, M.; Lamont, T.; Cheung, A.; Whelton, H.; Riley, P. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst. Rev. 2017, 3, CD008676. [Google Scholar] [CrossRef] [PubMed]
- Sheen, S.; Addy, M. An in vitro evaluation of the availability of cetylpyridinium chloride and chlorhexidine in some commercially available mouthrinse products. Br. Dent. J. 2003, 194, 207–210. [Google Scholar] [CrossRef]
- Marinho, V.C.; Chong, L.Y.; Worthington, H.V.; Walsh, T. Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2016, 7, CD002284. [Google Scholar] [CrossRef]
- Mandava, K.; Batchu, U.R.; Kakulavaram, S.; Repally, S.; Chennuri, I.; Bedarakota, S.; Sunkara, N. Design and study of anticaries effect of different medicinal plants against S. mutans Glucosyltransferase. BMC Complement. Altern. Med. 2019, 19, 197. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, B.; Rashidipour, M.; Marzban, A.; Soroush, S.; Azadpour, M.; Delfani, S.; Ramak, P. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr. Polym. 2019, 212, 142–149. [Google Scholar] [CrossRef]
- Wiwattanarattanabut, K.; Choonharuangdej, S.; Srithavaj, T. In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. J. Clin. Diagn. Res. 2017, 11, DC30–DC35. [Google Scholar] [CrossRef]
- Beatović, D.; Krstić-Milošević, D.; Trifunović, S.; Šiljegović, J.; Glamočlija, J.; Ristić, M.; Jelačić, S. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec. Nat. Prod. 2015, 9, 62–75. [Google Scholar]
- Freires, I.A.; Denny, C.; Benso, B.; de Alencar, S.M.; Rosalen, P.L. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Monawer, A. Elimination of oral pathogen. Int. J. Curr. Res. 2019, 11, 1862–1865. [Google Scholar]
- Bakhtiari, S.; Jafari, S.; Taheri, J.B.; Kashi, T.S.J.; Namazi, Z.; Iman, M.; Poorberafeyi, M. The effects of Cinnamaldehyde (cinnamon derivatives) and Nystatin on Candida albicans and Candida glabrata. Open Access Maced. J. Med. Sci. 2019, 7, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Ardizzoni, A.; Pericolini, E.; Paulone, S.; Orsi, C.F.; Castagnoli, A.; Oliva, I.; Strozzi, E.; Blasi, E. In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS ONE 2018, 13, e0207262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothiwale, S.V.; Patwardhan, V.; Gandhi, M.; Sohoni, R.; Kumar, A. A comparative study of antiplaque and antigingivitis effects of herbal mouthrinse containing tea tree oil, clove, and basil with commercially available essential oil mouthrinse. J. Indian Soc. Periodontol. 2014, 18, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Quintas, V.; Prada-López, I.; Donos, N.; Suárez-Quintanilla, D.; Tomás, I. Antiplaque effect of essential oils and 0.2% chlorhexidine on an in situ model of oral biofilm growth: A randomised clinical trial. PLoS ONE 2015, 10, e0117177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhashini, M.H.; Geetha, R.V. Action of tea tree oil and cinnamon leaf oil against oral pathogens. Asian J. Pharm. Clin. Res. 2015, 8, 79–80. [Google Scholar]
- John, L.J.; Shantakumari, N. Herbal medicines use during pregnancy: A review from the Middle East. Oman Med. J. 2015, 30, 229–236. [Google Scholar] [CrossRef]
- Wazaify, M.; Afifi, F.U.; El-Khateeb, M.; Ajlouni, K. Complementary and alternative medicine use among Jordanian patients with diabetes. Complement. Ther. Clin. Pract. 2011, 17, 71–75. [Google Scholar] [CrossRef]
- Jaafarpour, M.; Hatefi, M.; Najafi, F.; Khajavikhan, J.; Khani, A. The effect of cinnamon on menstrual bleeding and systemic symptoms with primary dysmenorrhea. Iran. Red Crescent Med. J. 2015, 17, e27032. [Google Scholar] [CrossRef] [Green Version]
- Kawatra, P.; Rajagopalan, R. Cinnamon: Mystic powers of a minute ingredient. Pharmacogn. Res. 2015, 7 (Suppl. 1), S1–S6. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakasha, G.K.; Rao, L.J. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.; Ford, P. Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a Flow Injection Mass Spectrometric (FIMS) fingerprinting method. J. Agric. Food Chem. 2014, 62, 2516–2521. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.; Shylaja, M.; Nirmal, B.K.; Krishnamoorthy, B. Botany and crop improvement of cinnamon and cassia. In Cinnamon and Cassia—The Genus Cinnamomum; Ravindran, P.N., Babu, K.N., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010, 50, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen 2017, 6, e00459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Teles, A.M.; Rosa, T.D.D.S.; Mouchrek, A.N.; Abreu-Silva, A.L.; Calabrese, K.D.S.; Almeida-Souza, F. Cinnamomum zeylanicum, Origanum vulgare, and Curcuma longa essential oils: Chemical composition, antimicrobial and antileishmanial activity. Evid. Based Complement. Altern. Med. 2019, 2019, 2421695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Chemical composition of the flower oil of Cinnamomum zeylanicum blume. J. Agric. Food Chem. 2000, 48, 4294–4295. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maurya, S.; De Lampasona, M.P.; Catalan, C.A. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem. Toxicol. 2007, 45, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Chemical composition of the volatile oil from the fruits of Cinnamomum zeylanicum Blume. Flavour Fragr. J. 1997, 12, 331–333. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Z. Nat. C J. Biosci. 2002, 57, 990–993. [Google Scholar] [CrossRef]
- Jose, A.J.; Leela, N.K.; Zachariah, T.J.; Rema, J. Evaluation of coumarin content and essential oil constituents in Cinnamomum cassia (Nees & T. Nees) J. Presl. J. Spices Aromat. Crops. 1970, 28, 43–51. [Google Scholar] [CrossRef]
- Firmino, D.F.; Cavalcante, T.T.A.; Gomes, G.A.; Firmino, N.C.S.; Rosa, L.D.; De Carvalho, M.G.; Júnior, F.E.A.C. Antibacterial and Antibiofilm activities of Cinnamomum Sp. essential oil and Cinnamaldehyde: Antimicrobial activities. Sci. World J. 2018, 2018, 7405736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; An, W.; Liu, S.; Huang, Y.; Xie, C.; Huang, S.; Zheng, X. Mining of candidate genes involved in the biosynthesis of dextrorotatory borneol in Cinnamomum burmannii by transcriptomic analysis on three chemotypes. Peer J. 2020, 8, e9311. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef] [PubMed]
- Fajara, A.; Ammara, G.A.; Hamzaha, M.; Manurunga, R.; Abduha, M.Y. Effect of tree age on the yield, productivity, and chemical composition of essential oil from Cinnamomum burmannii. Curr. Res. Biosci. Biotechnol. 2019, 1, 17–22. [Google Scholar]
- Daker, M.; Lin, V.Y.; Akowuah, G.A.; Yam, M.F.; Ahmad, M. Inhibitory effects of Cinnamomum burmannii Blume stem bark extract and trans-cinnamaldehyde on nasopharyngeal carcinoma cells; synergism with cisplatin. Exp. Ther. Med. 2013, 5, 1701–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakti, A.S.; Saputri, F.C.; Mun’im, A. Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon 2019, 5, e02915. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Cui, M.; Deng, M.; Liu, X.; Huang, X.; Zhang, X.; Luo, L.-P. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci. Rep. 2017, 7, 46579. [Google Scholar] [CrossRef]
- Singh, V.; Gupta, A.K.; Singh, S.P.; Kumar, A. Direct analysis in real time by mass spectrometric technique for determining the variation in metabolite profiles of Cinnamomum tamala Nees and Eberm genotypes. Sci. World J. 2012, 2012, 549265. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 2008, 15, 940–945. [Google Scholar] [CrossRef]
- Lee, S.C.; Xu, W.X.; Lin, L.Y.; Yang, J.J.; Liu, C.T. Chemical composition and hypoglycemic and pancreas-protective effect of leaf essential oil from indigenous cinnamon (Cinnamomum osmophloeum Kanehira). J. Agric. Food Chem. 2013, 61, 4905–4913. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Mariod, A.A.; Taha, M.M.E.; Zaman, F.Q.; Abdelmageed, A.H.A.; Khamis, S.; Sivasothy, K.; Awang, K. Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arab. J. Chem. 2017, 10, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, Y.; Sun, A.; Liu, X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci. Nutr. 2019, 7, 2186–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanage, T.; Madhujith, T.; Wijesinghe, K.G.G. Comparative study on major chemical constituents in volatile oil of true cinnamon (Cinnamomum verum Presl. syn C. zeylanicum Blum.) and five wild cinnamon species grown in Sri Lanka. Trop. Agric. Res. 2017, 28, 270–280. [Google Scholar] [CrossRef]
- Doh, E.J.; Kim, J.H.; Oh, S.E.; Lee, G. Identification and monitoring of Korean medicines derived from Cinnamomum spp. by using ITS and DNA marker. Genes Genomics 2017, 39, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and risk assessment of coumarin: Focus on human data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Avula, B.; Nanayakkara, N.P.; Zhao, J.; Khan, I.A. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem. 2013, 61, 4470–4476. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Isaac-Renton, M.; Li, M.K.; Parsons, L.M. Cinnamon spice and everything not nice: Many features of intraoral allergy to cinnamic aldehyde. Dermatitis 2015, 26, 116–121. [Google Scholar] [CrossRef]
- Calapai, G.; Miroddi, M.; Mannucci, C.; Minciullo, P.; Gangemi, S. Oral adverse reactions due to cinnamon-flavoured chewing gums consumption. Oral Dis. 2014, 20, 637–643. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Gupta, S.; Das, G. Clinical and radiographic evaluation of zinc oxide eugenol and metapex in root canal treatment of primary teeth. J. Indian Soc. Pedod. Prev. Dent. 2011, 29, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.M.; Neems, R.; Moore, J. Severe exacerbation of rosacea induced by cinnamon supplements. J. Drugs Dermatol. 2008, 7, 586–587. [Google Scholar] [PubMed]
- Tremblay, S.; Avon, S.L. Contact allergy to cinnamon: Case report. J. Can. Dent. Assoc. 2008, 74, 445–461. [Google Scholar] [PubMed]
- Endo, H.; Rees, T.D. Cinnamon products as a possible etiologic factor in Orofacial Granulomatosis. Med. Oral Patol. Oral Cir. Bucal 2007, 12, E440–E444. [Google Scholar]
- Ranasinghe, P.; Jayawardana, R.; Galappaththy, P.; Constantine, G.R.; de Vas Gunawardana, N.; Katulanda, P. Efficacy and safety of ‘true’ cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: A systematic review and meta-analysis. Diabet. Med. 2012, 29, 1480–1492. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Jayawardena, R.; Pigera, S.; Wathurapatha, W.S.; Weeratunga, H.D.; Premakumara, G.; Katulanda, P.; Constantine, G.R.; Galappaththy, P. Evaluation of Pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: A phase I clinical trial. BMC Complement Altern. Med. 2017, 17, 550. [Google Scholar] [CrossRef]
- Mendi, A.; Yağci, B.G.; Kiziloğlu, M.; Saraç, N.; Yilmaz, D.; Uğur, A.; Uçkan, D. Effects of Syzygium aromaticum, Cinnamomum zeylanicum, and salvia triloba extracts on proliferation and differentiation of dental pulp stem cells. J. Appl. Oral Sci. 2017, 25, 515–522. [Google Scholar] [CrossRef]
- D’Souza, S.P.; Chavannavar, S.V.; Kanchanashri, B.; Niveditha, S.B. Pharmaceutical perspectives of spices and condiments as alternative antimicrobial remedy. J. Evid. Based Complement. Altern. Med. 2017, 22, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.C.; Leme, E.E.; Delarmelina, C.; Soares, A.A.; Figueira, G.M.; Sartoratto, A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J. Ethnopharmacol. 2007, 111, 197–201. [Google Scholar] [CrossRef]
- Hovijitra, R.S.; Choonharuangdej, S.; Srithavaj, T. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures. J. Oral Sci. 2016, 58, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Varadarajan, S.; Narasimhan, M.; Malaisamy, M.; Duraipandian, C. Invitro anti-mycotic activity of hydro alcoholic extracts of some Indian medicinal plants against fluconazole resistant Candida albicans. J. Clin. Diagn. Res. 2015, 9, ZC07–ZC10. [Google Scholar] [CrossRef] [PubMed]
- Al-Radha, A.S.; Younes, C.; Diab, B.S.; Jenkinson, H.F. Essential oils and zirconia dental implant materials. Int. J. Oral Maxillofac. Implant. 2013, 28, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Elgamily, H.; Safy, R.; Makharita, R. Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: An in-vitro study. Open Access Maced. J. Med. Sci. 2019, 7, 2328–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A.U. Antimicrobial activity of five herbal extracts against Multi Drug Resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, A.M.; Gregory, R.L. In vitro cariostatic effects of cinnamon water extract on nicotine-induced Streptococcus mutans biofilm. BMC Complement. Med. Ther. 2020, 20, 45. [Google Scholar] [CrossRef] [Green Version]
- Galvão, L.C.; Furletti, V.F.; Bersan, S.M.; Da Cunha, M.G.; Ruiz, A.; De Carvalho, J.E.; Sartoratto, A.; Rehder, V.L.G.; Figueira, G.M.; Duarte, M.C.T.; et al. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evid. Based Complement. Altern. Med. 2012, 2012, 751435. [Google Scholar] [CrossRef] [Green Version]
- Karadağlıoğlu, Ö.İ.; Ulusoy, N.; Başer, K.H.C.; Hanoğlu, A.; Şık, İ. Antibacterial activities of herbal toothpastes combined with essential oils against Streptococcus mutans. Pathogens 2019, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, L.K.; Jawale, B.A.; Sharma, S.; Sharma, H.; Kumar, C.D.; Kulkarni, P.A. Antimicrobial activity of commercially available essential oils against Streptococcus mutans. J. Contemp. Dent. Pract. 2012, 13, 71–74. [Google Scholar] [CrossRef]
- Choi, O.; Cho, S.K.; Kim, J.; Park, C.G.; Kim, J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac. J. Trop. Biomed. 2016, 6, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225. [Google Scholar] [CrossRef]
- Alexa, V.T.; Galuscan, A.; Popescu, I.; Tirziu, E.; Obistioiu, D.M.; Floare, A.D.; Perdiou, A.; Jumanca, D. Synergistic/antagonistic potential of natural preparations based on essential oils against Streptococcus mutans from the oral cavity. Molecules 2019, 24, 4043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fani, M.M.; Kohanteb, J. Inhibitory activity of cinnamon Zeylanicum and eucalyptus Globulus oils on Streptococcus mutans, Staphylococcus aureus, and candida species isolated from patients with oral infections. Shiraz Univ. Dent. J. 2011, 11, 14. [Google Scholar]
- SHerzaee, M.; Poorzamani, M. Inhibitory effects of plant extracts containing thyme, Clore and cinnamon compared to Nystatin on Candida albicans. (In Vitro). Res. Dent. Sci. 2012, 8, 175–179. [Google Scholar]
- Veilleux, M.P.; Grenier, D. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. BMC Complement. Altern. Med. 2019, 19, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, M.L.; de Aquino, S.G.; de Lima, J.M.; Castellano, L.R.; de Castro, R.D. In vitro effect of Cinnamomum zeylanicum Blume essential oil on Candida spp. involved in oral infections. Evid. Based Complement. Altern. Med. 2018, 2018, 4045013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, J.d.A.; da Silva, I.C.; Trindade, L.A.; Lima, E.O.; Carlo, H.L.; Cavalcanti, A.L.; De Castro, R.D. Safety and tolerability of essential oil from Cinnamomum zeylanicum Blume leaves with action on oral Candidosis and its effect on the physical properties of the acrylic resin. Evid. Based Complement. Altern. Med. 2014, 2014, 325670. [Google Scholar] [CrossRef] [Green Version]
- Latti, P.; Ramanarayanan, S.; Prashant, G.M. Antifungal efficacy of spice extracts against Candida albicans: An in vitro study. Indian J. Community Med. 2019, 44 (Suppl. 1), S77–S80. [Google Scholar] [CrossRef]
- Carvalhinho, S.; Costa, A.M.; Coelho, A.C.; Martins, E.; Sampaio, A. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essentials oils and mouth rinses. Mycopathologia 2012, 174, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.d.F.; Paula, J.F.; Almeida, R.V.; Williams, D.W.; Hebling, J.; Cavalcanti, Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016, 74, 393–398. [Google Scholar] [CrossRef]
- Taguchi, Y.; Takizawa, T.; Ishibashi, H.; Sagawa, T.; Arai, R.; Inoue, S.; Yamaguchi, H.; Abe, S. Therapeutic effects on murine oral candidiasis by oral administration of cassia (Cinnamomum cassia) preparation. Nihon Ishinkin Gakkai Zasshi 2010, 51, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Prada, I.; Micó-Muñoz, P.; Giner-Lluesma, T.; Micó-Martínez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. Med. Oral Patol. Oral. Cir. Bucal 2019, 24, e364–e372. [Google Scholar] [CrossRef] [PubMed]
- Medvedec, M.I.; Cigić, L.; Kero, D.; Govorko, D.K.; Mehičić, G.P.; Andrašević, A.T.; Simeon, P. Antimicrobial effectiveness of Polyhexamethylene Biguanide on Enterococcus faecalis, Staphylococcus epidermidis and Candida albicans. Med. Glas. 2018, 15, 132–138. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Salgar, A.R.; Prathibha, N.; Chandrahari, N.; Swapna, L.A. An in vitro comparative evaluation of antimicrobial efficacy of Propolis, Morinda Citrifolia juice, sodium hypochlorite and Chlorhexidine on Enterococcus faecalis and Candida albicans. J. Contemp. Dent. Pract. 2019, 20, 40–45. [Google Scholar] [PubMed]
- Abbaszadegan, A.; Dadolahi, S.; Gholami, A.; Moein, M.R.; Hamedani, S.; Ghasemi, Y.; Abbott, P.V.; Patil, S. Antimicrobial and cytotoxic activity of Cinnamomum zeylanicum, Calcium hydroxide, and triple antibiotic paste as root canal dressing materials. J. Contemp. Dent. Pract. 2016, 17, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Duhan, J.; Tewari, S.; Sangwan, P.; Yadav, A.; Singh, G.; Juneja, R.; Saini, H. Comparative evaluation of antimicrobial efficacy of Syzygium aromaticum, Ocimum sanctum and Cinnamomum zeylanicum plant extracts against Enterococcus faecalis: A preliminary study. Int. Endod. J. 2013, 46, 775–783. [Google Scholar] [CrossRef]
- Gupta-Wadhwa, A.; Wadhwa, J.; Duhan, J. Comparative evaluation of antimicrobial efficacy of three herbal irrigants in reducing intracanal, E. faecalis populations: An in vitro study. J. Clin. Exp. Dent. 2016, 8, e230–e235. [Google Scholar] [CrossRef]
- Panchal, V.; Gurunathan, D.; Muralidharan, N.P. Comparison of antibacterial efficacy of cinnamon extract, Neem extract as irrigant and sodium hypochlorite against Enterococcus fecalis: An in vitro study. Indian J. Dent. Res. 2020, 31, 124–128. [Google Scholar] [CrossRef]
- Cavalcanti, Y.W.; Pérez, A.L.A.L.; Xavier, G.D.R.; de Almeida, L.d.F.D. Inhibitory effect of essential oils against organisms from root canal. Rev. Odontol. UNESP 2011, 40, 208–214. [Google Scholar]
- Richards, D. Effect of essential oil mouthwashes on plaque and gingivitis. Evid. Based Dent. 2017, 18, 39–40. [Google Scholar] [CrossRef]
- Charles, C.H.; Mostler, K.M.; Bartels, L.L.; Mankodi, S.M. Comparative antiplaque and antigingivitis effectiveness of a Chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J. Clin. Periodontol. 2004, 31, 878–884. [Google Scholar] [CrossRef]
- Gupta, D.; Jain, A. Effect of cinnamon extract and Chlorhexidine Gluconate (0.2%) on the clinical level of dental plaque and gingival health: A 4-week, triple-blind randomized controlled trial. J. Int. Acad. Periodontol. 2015, 17, 91–98. [Google Scholar] [PubMed]
- LeBel, G.; Haas, B.; Adam, A.A.; Veilleux, M.P.; Lagha, A.B.; Grenier, D. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch. Oral Biol. 2017, 83, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Saquib, S.A.; AlQahtani, N.A.; Ahmad, I.; Kader, M.A.; Al Shahrani, S.S.; Asiri, E.A. Evaluation and comparison of antibacterial efficacy of herbal extracts in combination with antibiotics on periodontal pathobionts: An in vitro microbiological study. Antibiotics 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardají, D.K.; Reis, E.B.; Medeiros, T.C.; Lucarini, R.; Crotti, A.E.; Martins, C.H. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria. Nat. Prod. Res. 2016, 30, 1178–1181. [Google Scholar] [CrossRef]
- Parthasarathy, H.; Thombare, S. Evaluation of antimicrobial activity of Azadirachta indica, Syzygium aromaticum and Cinnamomum zeyalnicumagainst oral microflora. Asian J. Exp. Sci. 2013, 27, 13–16. [Google Scholar]
- Li, M.Y.; Wang, J.; Xu, Z.T. Effect of a variety of Chinese herbs and an herb-containing dentifrice on volatile sulfur compounds associated with halitosis: An in vitro analysis. Curr. Ther. Res. Clin. Exp. 2010, 71, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y. Production Method of Chewing Gum and Bubble Gum Capable of Preventing and Treating Decayed Tooth and Periodontitis. Patent Number CN 1994116766, 24 January 1996. [Google Scholar]
- Guerra, F.Q.; Mendes, J.M.; Sousa, J.P.; Morais-Braga, M.F.; Santos, B.H.C.; Coutinho, H.D.M.; Lima, E.D.O. Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp by essential oils of Citrus limon and Cinnamomum zeylanicum. Nat. Prod. Res. 2012, 26, 2235–2238. [Google Scholar] [CrossRef]
- Yap, P.S.; Lim, S.H.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Shi, Y.Q.; Pan, X.H.; Lu, Y.H.; Cao, P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb. Pathog. 2018, 116, 26–32. [Google Scholar] [CrossRef]
- Naveed, R.; Hussain, I.; Tawab, A.; Tariq, M.; Rahman, M.; Hameed, S.; Mahmood, M.S.; Siddique, A.B.; Iqbal, M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complement. Altern. Med. 2013, 13, 265. [Google Scholar] [CrossRef] [Green Version]
- Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016, 16, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 2009, 74, M379–M383. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Bhatia, R.; Khan, L.A.; Khan, N.; Maurya, I.K.; Ahmad, S.I.; Muralidhar, S.; Manzoor, N. Cinnamic aldehydes affect hydrolytic enzyme secretion and morphogenesis in oral Candida isolates. Microb. Pathog. 2012, 52, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Bhatia, R.; Khan, L.A.; Khan, N.; Muralidhar, S.; Basir, S.F.; Manzoor, N. Spice oil cinnamaldehyde exhibits potent anticandidal activity against fluconazole resistant clinical isolates. Fitoterapia 2011, 82, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A.; Ben Kahla-Nakbi, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog. 2017, 113, 396–402. [Google Scholar] [CrossRef]
- Jafri, H.; Khan, M.S.A.; Ahmad, I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine 2019, 54, 206–213. [Google Scholar] [CrossRef]
- Adil, M.; Singh, K.; Verma, P.K.; Khan, A.U. Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: An approach to inhibit biofilms. J. Glob. Antimicrob. Resist. 2014, 2, 286–292. [Google Scholar] [CrossRef]
- Xu, J.S.; Li, Y.; Cao, X.; Cui, Y. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Exp. Ther. Med. 2013, 5, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.E.; Kim, H.Y.; Cha, J.D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol. 2011, 56, 907–916. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, F.J.; Bedi, S.; Sharma, S.; Umar, S.; Ansari, M.A. A novel Nanoformulation development of Eugenol and their treatment in inflammation and periodontitis. Saudi Pharm. J. 2019, 27, 778–790. [Google Scholar] [CrossRef]
- Jaidka, S.; Somani, R.; Singh, D.J.; Sheikh, T.; Chaudhary, N.; Basheer, A. Herbal combat against E. faecalis—An in vitro study. J. Oral Biol. Craniofacial Res. 2017, 7, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Jwa, S.K. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch. Oral Biol. 2018, 88, 42–46. [Google Scholar] [CrossRef]
- Yoo, H.J.; Jwa, S.K. Efficacy of β-caryophyllene for periodontal disease related factors. Arch. Oral Biol. 2019, 100, 113–118. [Google Scholar] [CrossRef]
- Pentapati, K.C.; Kukkamalla, M.A.; Siddiq, H.; Sabnis, N. Effectiveness of novel herbal dentifrice in control of plaque, gingivitis, and halitosis—Randomized controlled trial. J. Tradit. Complement. Med. 2019. [Google Scholar] [CrossRef]
- Shanmugapriya, R.; Arunmozhi, U.; Kadhiresan, R.; Sabitha, S.; Anirudhya, R.; Sujatha, G. Comparison of antiplaque effectiveness of herbal toothpaste: A randomized triple-blinded cross-over clinical trial. AYU 2019, 40, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Ahmad, M.M.; Kazmi, Z.H.; Raza, M.S. Physico-chemical variations in essential oils of citrus reticulata. J. Food Sci. Technol. 2007, 44, 353–356. [Google Scholar]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar] [CrossRef]
- Lin, C.; Yeh, T.; Cheng, S.; Chang, S. Complementary relationship between trans-cinnamaldehyde and trans-cinnamyl acetate and their seasonal variations in Cinnamomum osmophloeum ct. cinnamaldehyde. Ind. Crop. Prod. 2019, 127, 172–178. [Google Scholar] [CrossRef]
- Tak, J.H.; Isman, M.B. Penetration-enhancement underlies synergy of plant essential oil Terpenoids as insecticides in the cabbage Looper, Trichoplusia ni. Sci. Rep. 2017, 7, 42432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, J.H.; Isman, M.B. Enhanced Cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci. Rep. 2015, 5, 12690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cinnamon Species | Part of the Plant | Essential Oil (EO) or Extract | Main Compounds | Reference |
---|---|---|---|---|
C. zeylanicum | flower | EO | (E)-Cinnamyl acetate (41.98%), trans-alpha-Bergamotene (7.97%), caryophyllene oxide (7.2%) | [27] |
C. zeylanicum | leaf | - | Eugenol (87.3%) | [28] |
C. zeylanicum | bark | - | (E)-Cinnamaldehyde (49.9%) | [28] |
C. zeylanicum | fruit | EO | trans-Cinnamyl acetate and β-Caryophyllene | [29] |
C. zeylanicum | bud | EO | α-Bergamotene and α-Copaene | [30] |
C. cassia | bark | EO | t-Cinnamaldehyde (75–97%) | [31] |
C. cassia | leaf | EO | t-Cinnamaldehyde (33.5–69.3%) and methoxy cinnamaldehyde (11.29–23.37%) | [31] |
C. zeylanicum | bark | EO | (E)-Cinnamaldehyde (68.7%), Cinnamyl (E)-acetate (7.12%), and eugenol (6.33%) | [32] |
C. cassia | bark | EO | (E)-Cinnamaldehyde (90.22%) | [32] |
C. burmanni | leaf | extract | d-borneol | [33] |
C. burmanni | stick | extract | (E)-Cinnamaldehyde and polyphenols | [34] |
C. burmanni | leaf and bark | EO | trans-Cinnamaldehyde (68.30–84.71%), cinnamyl acetate (2.97–16.10%), cinnamyl alcohol, and trans-Cinnamic acid | [35] |
C. burmanni | bark | extract | trans-Cinnamaldehyde | [36] |
C. burmanni | bark | extract | trans-Cinnamaldehyde, coumarin, and brazilin | [37] |
C. camphora | leaf | - | Isoborneol-type, camphora-type, cineole-type, linalool-type, and borneol-type | [38] |
C. tamala | leaf | - | Eugenol | [39] |
C. osmophloeum | α-Pinene, camphene, benzaldehyde, β-Pinene, 3-pheayl pionaldehyde, cis-Cinnamaldehyde, trans-Cinnamaldehyde, isobornylacetate, eugenol, and cinnamyl acetate | [40] | ||
C. osmophloeum | leaf | EO | Linalool, trans-Cinnamyl acetate, camphor, cinnamaldehyde | [41] |
Cinnamomum altissimum | bark | EO | Linalool (36.0%), methyl eugenol (12.8%), limonene (8.3%), α-Terpineol (7.8%), and terpinen-4-ol (6.4%) | [42] |
C. cassia | Bark | extract | (E)-Cinnamaldehyde (62.96%), coumarin (11.36%), α-Copaene (3.78%), 3-methoxy-1,2-propanediol (3.26%), and α-Cuaiene (3.19%) | [43] |
C. loureiroi | bark | extract | (E)-Cinnamaldehyde (51.69%), α-Copaene (16.14%), cinnamaldehyde dimethyl acetal (5.66%), β-Cadinene (3.19%), and α-Muurolene (4.78%). | [43] |
C. burmannii | bark | extract | (E)-Cinnamaldehyde (34.44%), eugenol (25.67%), coumarin (16.82%), borneol (3.28%), and methyl cinnamate (3.16%) | [43] |
C. wilsonii | bark | extract | Linalool (23.66%), (E)-Cinnamaldehyde (19.63%), citral (15.45%), (E)-Cinnamyl acetate (8.65%), and 1,8-Cineole (5.54%) | [43] |
C. verum | leaf | - | Eugenol (85.66%), acetyl eugenol (6.07%), cinnamaldehyde, β-Caryophyllene (1.08%) | [44] |
C. verum | bark | - | Cinnamaldehyde (67.57%), eugenol (16.03%), α-Pinene (5.76%), linalool (3.78%), β-Caryophyllene (3.66%) | [44] |
C. dubium | leaf | - | Geraniol (24.05%), cinnamyl alcohol (15.65%), eugenol (9.17%), β-Caryophyllene (5.60%), and α-Pinene (4.04%) | [44] |
C. dubium | bark | - | β-Caryophyllene (41.31%), cinnamyl alcohol (8.61%), hydro cinnamic aldehyde (7.70%), eugenol (5.08%), and garaniol (3.86%) | [44] |
C. rivolorum | leaf | - | Eugenol (63.45%), α-Pinene (3.17%), geraniol (2.06%), cinnamaldehyde (1.57%), and β-Caryophyllene (1.24%) | [44] |
C. rivolorum | bark | - | Cinnamaldehyde (31.78%), eugenol (22.29%), β-Caryophyllene (8.21%), and geraniol (7.76%) | [44] |
C. sinharajense | leaf | - | Eugenol (87.53%), cinnamaldehyde (2.04%), cinnamyl alcohol (1.50%), and β-Caryophyllene (1.04%) | [44] |
C. sinharajense | bark | - | Cinnamaldehyde (57.46%), cinnamyl acetate (13.69%), and β-Caryophyllene (4.54%) | [44] |
C. citriodorum | leaf | - | Linalool (30.71%), cinnamyl alcohol (5.36%), cinnamyl acetate (3.20%), citronellol (2.44%), and cinnamaldehyde (2.27%) | [44] |
C. citriodorum | bark | - | Cinnamaldehyde (42.74%), geraniol (19.95%), linalool (8.94%), eugenol (4.0%), and β-Caryophyllene (3.56%) | [44] |
Cinnamon Species | EO or Extract | Bacterial Strains | MIC (%) | MBC (%) | Reference |
---|---|---|---|---|---|
C. zeylanicum | EO | S. mutans L. casei | 0.08 0.16 | 0.08 0.16 | [7] |
C. zeylanicum | Methanolic extract | S. mutans L. acidophilus | 1.34 0.52 | 2.36 1.64 | [64] |
C. zeylanicum | Ethanolic extract | S. mutans | 0.02 | 0.04 | [65] |
C. zeylanicum | Water extract | S. mutans | 0.25 | 0.25 | [66] |
C. zeylanicum | EO | S. mutans | 0.02–0.05 | 0.05–0.1 | [67] |
Cinnamon Species | EO or Extract | Candida Species | MIC (%) | MFC (%) | Reference |
---|---|---|---|---|---|
C. zeylanicum | EO | C. albicans C. tropicalis C. glabatra | 0.01–0.05 | 0.01–0.05 | [24] |
C. zeylanicum | EO | C. albicans C. glabatra | 5.12 | - | [73] |
C. zeylanicum | EO | C. albicans | 0.039–0.078 | 0.078 | [75] |
C. zeylanicum | EO | C. albicans, C. tropicalis C. krusei | 0.006–0.1 | 0.01–0.1 | [76] |
C. zeylanicum | EO | C. albicans, C. tropicalis | 0.03–0.06 | 0.03–0.06 | [77] |
C. zeylanicum | EO | C. albicans | 0.005 | 0.01 | [61] |
C. zeylanicum | Methanolic extract | C. albicans | 0.005 | - | [78] |
C. zeylanicum | Hydroalcoholic extract | C. albicans | 0.001 | - | [62] |
C. cassia | EO | C. albicans | 0.006 | 0.006 | [80] |
C. zeylanicum | Ethanolic extract | C. albicans | 0.002 | 0.008 | [65] |
MIC | MBC | MFC | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Caries pathogens | 0.31 | 0.45 | 0.585 | 0.896 | - | - |
Candida spp. | 0.030 | 0.032 | - | - | 0.036 | 0.032 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanakiev, S. Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules 2020, 25, 4184. https://doi.org/10.3390/molecules25184184
Yanakiev S. Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules. 2020; 25(18):4184. https://doi.org/10.3390/molecules25184184
Chicago/Turabian StyleYanakiev, Spartak. 2020. "Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review" Molecules 25, no. 18: 4184. https://doi.org/10.3390/molecules25184184
APA StyleYanakiev, S. (2020). Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules, 25(18), 4184. https://doi.org/10.3390/molecules25184184