Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis
Abstract
:1. Introduction
2. Results
2.1. SMS2 Can be Expressed in the Human Testis and Present in Whole Sperm
2.2. The Expression of SMS2 Was Different in Asthenospermia and Normozoospermia
2.3. The SMS2 Antibody Can Block the SMS Enzyme Activity and Biosynthesis of SM
2.4. Inhibition of SMS2 Activity Decreased Sperm Motility and Penetration Ability into Methylcellulose
2.5. Inhibition of SMS2 Activity Had no Significant Effect on the Capacitation and Acrosome Reaction
2.6. Inhibition of SMS2 Activity had no Effect on Sperm Ca2+ Signaling
2.7. Inhibition of SMS2 Activity Affects the Phosphorylation of AKT and ERK as well as the Cleaved Caspase 3
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Treatment
4.2. Analysis of SMS2 in Human Testis and Sperm
4.3. SMS Enzyme Activity Assay
4.4. SM Measurement
4.5. Sperm Motility and Penetration Tests
4.6. Evaluation of Capacitation and the Acrosome Reaction
4.7. Single Sperm [Ca2+]i Imaging
4.8. Quantitative PCR Analysis
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamilton, J.A.M.; Cissen, M.; Brandes, M.; Smeenk, J.M.J.; De Bruin, J.P.; Kremer, J.A.M.; Nelen, W.L.D.M.; Hamilton, C.J.C.M. Total motile sperm count: A better indicator for the severity of male factor infertility than the WHO sperm classification system. Hum. Reprod. 2015, 30, 1110–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahrokhi, S.Z.; Salehi, P.; Alyasin, A.; Taghiyar, S.; Deemeh, M.R. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2020, 52, e13463. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, S.; Cordeschi, G.; Pelliccione, F.; Bocchio, M.; Francavilla, F. Isolated teratozoospermia: A cause of male sterility in the era of ICSI. Front. Biosci. 2007, 12, 69–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auguste, Y.; Delague, V.; Desvignes, J.P.; Longepied, G.; Gnisci, A.; Besnier, P.; Levy, N.; Beroud, C.; Megarbane, A.; Metzler-Guillemain, C. Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am. J. Hum. Genet. 2018, 103, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Cekici, H.; Akdevelioğlu, Y. The association between trans fatty acids, infertility and fetal life: A review. Hum. Fertil. (Camb.) 2019, 22, 154–163. [Google Scholar] [CrossRef]
- So, K.S.; Rho, J.K.; Choi, Y.J.; Kim, S.Y.; Choi, C.M.; Chun, Y.J.; Lee, J.C. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J. Proteom. 2012, 75, 5861–5871. [Google Scholar] [CrossRef]
- So, K.S.; Rho, J.K.; Choi, Y.J.; Kim, S.Y.; Choi, C.M.; Chun, Y.J.; Lee, J.C. AKT/mTOR down-regulation by CX-4945, a CK2 inhibitor, promotes apoptosis in chemorefractory non-small cell lung cancer cells. Anticancer Res. 2015, 35, 1537–1542. [Google Scholar]
- Kim, S.T.; Omurtag, K.; Moley, K.H. Decreased spermatogenesis, fertility, and altered Slc2A expression in Akt1-/- and Akt2-/- testes and sperm. Reprod. Sci. 2012, 19, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.C.; Yu, A.; Moawad, A.R. O’Flaherty C. Peroxiredoxin 6 regulates the phosphoinositide 3-kinase/AKT pathway to maintain human sperm viability. Mol. Hum. Reprod. 2019, 25, 787–796. [Google Scholar] [CrossRef]
- Shati, A.A. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt pathways. Syst. Biol. Reprod. Med. 2019, 65, 236–249. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Ji, A.T.; Chang, C.C.; Chien, M.H.; Lee, L.M.; Ho, J.H. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res. Ther. 2019, 10, 270. [Google Scholar] [CrossRef]
- Yang, L.L.; Zhang, P.F.; Zhang, T.Y.; Shen, W.; Zhao, Y.; Yin, S. Ortho-phenylphenol exposure impairs porcine sperm motility through AMPK/AKT signaling pathway. Environ. Mol. Mutagenes 2019, 60, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Tian, G.; Xu, C.; Li, X.; Zhang, Y.; Wang, Y.; Qin, J.; Fok, E.K.L.; Hinton, B.T.; Mak, K.K.L.; et al. Hippo kinases MST1 and MST2 control the differentiation of the epididymal initial segment via the MEK-ERK pathway [published online ahead of print, 2020 Apr 24]. Cell Death Differ. 2020, 1–13. [Google Scholar] [CrossRef]
- Wu, H.; Gao, J.; Wang, X.; Leung, T.Y.; Duan, Y.G.; Chiu, P.C.N. Platelet-activating factor induces acrosome reaction via the activation of extracellular signal-regulated kinase in human spermatozoa. Andrologia 2020, 52, e13565. [Google Scholar] [CrossRef]
- Seong, J.B.; Bae, Y.C.; Lee, H.S.; Huh, J.W.; Lee, S.R.; Lee, H.J.; Lee, D.S. Increasing ERK phosphorylation by inhibition of p38 activity protects against cadmium-induced apoptotic cell death through ERK/Drp1/p38 signaling axis in spermatocyte-derived GC-2spd cells. Toxicol. Appl. Pharmacol. 2019, 384, 114797. [Google Scholar] [CrossRef]
- Yeang, C.; Ding, T.; Chirico, W.J.; Jiang, X.C. Subcellular targeting domains of sphingomyelin synthase 1 and 2. Nutr. Metab. (Lond.) 2011, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, B.S.; Johnson, D.W.; Poulos, A. Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J. Biol. Chem. 1992, 267, 1746–1751. [Google Scholar]
- Zanetti, S.R.; de Los Ángeles Monclus, M.; Rensetti, D.E.; Fornés, M.W.; Aveldaño, M.I. Ceramides with 2-hydroxylated, very long-chain polyenoic fatty acids in rodents: From testis to fertilization-competent spermatozoa. Biochimie 2010, 92, 1778–1786. [Google Scholar] [CrossRef]
- Cross, N.L. Sphingomyelin modulates capacitation of human sperm in vitro. Biol. Reprod. 2000, 63, 1129–1134. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.P.; Mruk, D.D.; Xia, W.; Cheng, C.Y. Cellular localization of sphingomyelin synthase 2 in the seminiferous epithelium of adult rat testes. J. Endocrinol. 2007, 192, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, A.; Grimm, M.O.; Scherthan, H.; Horsch, M.; Beckers, J.; Fuchs, H.; Gailus-Durner, V.; Hrabě de Angelis, M.; Ford, S.J.; Burton, N.C.; et al. Sphingomyelin synthase 1 is essential for male fertility in mice. PLoS ONE 2016, 11, e0164298. [Google Scholar] [CrossRef]
- Oresti, G.M.; Luquez, J.M.; Furland, N.E.; Aveldaño, M.I. Uneven distribution of ceramides, sphingomyelins and glycerophospholipids between heads and tails of rat spermatozoa. Lipids 2011, 46, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, C.; Zhang, L.; Chen, M.; Zhou, Y.; Qin, Y.; Wang, Y.; Duo, S.; Cui, X.; Bao, S.; et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2017, 8, e2532. [Google Scholar] [CrossRef]
- Amaral, A.; Castillo, J.; Estanyol, J.M.; Ballescà, J.L.; Ramalho-Santos, J.; Oliva, R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell Proteom. 2013, 12, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.W.; Mruk, D.D.; Cheng, C.Y. Mitogen-activated protein kinases in male reproductive function. Trends Mol. Med. 2009, 15, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hao, J.; Hu, J.; Pu, J.; Lü, Z.; Zhao, L.; Wang, Q.; Yu, Q.; Wang, Y.; Li, G. Protective effects of ginsenosides against Bisphenol A-induced cytotoxicity in 15P-1 Sertoli cells via extracellular signal-regulated kinase 1/2 signalling and antioxidant mechanisms. Basic Clin. Pharmacol. Toxicol. 2012, 111, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.P.; Zheng, X.M.; Zheng, H.; Liu, X.J.; Liu, G.Y.; Wang, X.H. Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatogenic function in mouse testes. Asian J. Androl. 2012, 14, 884–889. [Google Scholar] [CrossRef]
- Ashizawa, K.; Hashimoto, K.; Higashio, M.; Tsuzuki, Y. The addition of mitogen-activated protein kinase and p34cdc2 kinase substrate peptides inhibits the flagellar motility of demembranated fowl spermatozoa. Biochem. Biophys. Res. Commun. 1997, 240, 116–121. [Google Scholar] [CrossRef]
- Banerjee, B.; Chakraborty, S.; Ghosh, D.; Raha, S.; Sen, P.C.; Jana, K. Benzo(a)pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Front. Pharmacol. 2016, 7, 245. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, G.; Cárdenas, Y.; Rodríguez, Y.; Morales, L.C.; Matheus, L.; Arboleda, H. Differential regulation of AKT, MAPK and GSK3β during C2-ceramide-induced neuronal death. Neurotoxicology 2010, 31, 687–693. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Q.; Feng, M.; Li, J.; Guan, Z.; An, D.; Dong, M.; Peng, Y.; Kuerban, K.; Ye, L. C2-ceramide enhances sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and Erk signaling pathways in HCC cells. Appl. Microbiol. Biotechnol. 2017, 101, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.; Kwon, H.J. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch Pharm Res. 2019, 42, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, L.; Hakala, J.K.; Pentikaínen, V.; Otala, M.; Erkkilä, K.; Pentikaínen, M.O.; Dunkel, L. Sphingosine-1-phosphate in inhibition of male germ cell apoptosis in the human testis. J. Clin. Endocrinol. Metab. 2003, 88, 5572–5579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Reis-Sobreiro, M.; Roué, G.; Moros, A.; Gajate, C.; de la Iglesia-Vicente, J.; Colomer, D.; Mollinedo, F. Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J. 2013, 3, e118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, L.; Du, J.; Li, Y.; Yang, H.; Li, C.; Li, H.; Hu, H. Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway. Oncol. Lett. 2016, 12, 4991–4998. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Wu, N.; Zhao, R.; He, X.; Liu, Q.; Li, X.; He, Z.; Yu, L.; Yan, N. Sphingomyelin synthase 2 promotes endothelial dysfunction by inducing endoplasmic reticulum stress. Int. J. Mol. Sci. 2019, 20, 2861. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- De Visser, Y.P.; Walther, F.J.; Laghmani, E.H.; van Wijngaarden, S.; Nieuwland, K.; Wagenaar, G.T. Phosphodiesterase-4 inhibition attenuates pulmonary inflammation in neonatal lung injury. Eur. Respir. J. 2008, 31, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Almog, T.; Lazar, S.; Reiss, N.; Etkovitz, N.; Milch, E.; Rahamim, N.; Dobkin-Bekman, M.; Rotem, R.; Kalina, M.; Ramon, J.; et al. Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J. Biol. Chem. 2008, 283, 14479–14489. [Google Scholar] [CrossRef] [Green Version]
- Almog, T.; Lazar, S.; Reiss, N.; Etkovitz, N.; Milch, E.; Rahamim, N.; Dobkin-Bekman, M.; Rotem, R.; Kalina, M.; Ramon, J.; et al. Effects of sepsis on the metabolism of sphingomyelin and cholesterol in mice with liver dysfunction. Exp. Ther. Med. 2017, 14, 5635–5640. [Google Scholar] [CrossRef] [Green Version]
- Hojjati, M.R.; Jiang, X.C. Rapid, specific, and sensitive measurements of plasma sphingomyelin and phosphatidylcholine. J. Lipid Res. 2006, 47, 673–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, T.; Zou, Q.X.; He, Y.Q.; Wang, H.F.; Li, N.; Zeng, X.H. Matrine inhibits mouse sperm function by reducing sperm [Ca2+]i and phospho-ERK1/2. Cell Physiol. Biochem. 2015, 35, 374–385. [Google Scholar] [CrossRef]
- Luo, T.; Li, N.; He, Y.Q.; Weng, S.Q.; Wang, T.; Zou, Q.X.; Zeng, X.H. Emodin inhibits human sperm functions by reducing sperm [Ca(2+)]i and tyrosine phosphorylation. Reprod. Toxicol. 2015, 51, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Ding, T.; Dong, J.; Li, Y.; Wu, M. Sphingomyelin synthase overexpression increases cholesterol accumulation and decreases cholesterol secretion in liver cells. Lipids Health Dis. 2011, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Hou, H.; Liu, S.; Feng, Y.Y.; Zhong, W.S.; Hu, X.J.; Yan, N.L. miR-33 and RIP140 participate in LPS-induced acute lung injury. Turk J. Med. Sci. 2019, 49, 422–428. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Luo, T.; Li, H.; Yan, N. Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis. Molecules 2020, 25, 4231. https://doi.org/10.3390/molecules25184231
Li X, Luo T, Li H, Yan N. Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis. Molecules. 2020; 25(18):4231. https://doi.org/10.3390/molecules25184231
Chicago/Turabian StyleLi, Xiatian, Tao Luo, Hua Li, and Nianlong Yan. 2020. "Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis" Molecules 25, no. 18: 4231. https://doi.org/10.3390/molecules25184231
APA StyleLi, X., Luo, T., Li, H., & Yan, N. (2020). Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis. Molecules, 25(18), 4231. https://doi.org/10.3390/molecules25184231