Comprehensive Evaluation of Metal Pollution in Urban Soils of a Post-Industrial City—A Case of Łódź, Poland
Abstract
:1. Introduction
2. Results and Discussion
2.1. Descriptive Statistic, Pollution Indices, Single-Metal Distribution Maps
2.2. Multivariate Analysis and Spatial Distribution of the Principal Components (PCs)
- Outliers (hot-spots)—no. 2 (energy willow crops fertilized with sludge from a wastewater treatment plant), no. 4, 44, 49, 52 (soils collected near roads with heavy traffic), no. 49 (located near the cement factory);
- Cluster 1—soils contaminated with Pb, Cu (and Zn) sampled within an area bounded by peripheral route railways; it is the oldest part of Łódź with compact buildings, still with tenements, narrow streets with heavy traffic (cars, buses, trams). Therefore, the main sources of pollution are transport, emissions from coal-fired furnaces, corrosion of building materials, metal construction elements, and service activities (workshops, commerce). Corrosion of building materials increases the pH (Figure 2), which in turn promotes metal accumulation. The source of metals is also storm water runoff from roofs [63];
- Cluster 2a—includes locations in the city center and its south and southeast parts (parks, grasslands, the oldest residential, industrial, service, and commercial areas). Half of these soil samples are contaminated with copper from sources other than sites for cluster 1 (e.g., fertilizers and copper-based pesticides);
- Cluster 2b—sites with low metal contents, situated outside the peripheral route railways; this area is dominated by housing estates and land used for agricultural purposes;
- Clusters 2c and 2d—unpolluted soils located on the outskirts of the city, differing in reaction: cluster 2c contains slightly acidic and acidic soils, belonging to groups I and II of soil use; cluster 2d gathers very acidic agricultural soils.
3. Materials and Methods
3.1. Study Area and Soil Sampling
3.2. Analytical and Statistical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nazzal, Y.H.; Al-Arifi, N.S.N.; Jafri, M.K.; Kishawy, H.A.; Ghrefat, H.; El-Waheidi, M.M.; Batayneh, A.; Zumlot, T. Multivariate statistical analysis of urban soil contamination by heavy metals at selected industrial locations in the Greater Toronto area, Canada. Geol. Croat. 2015, 68, 147–159. [Google Scholar] [CrossRef]
- Jin, Y.; O‘Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children‘s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Nazarpour, A.; Watts, M.J.; Madhani, A.; Elahi, S. Source, Spatial Distribution and Pollution Assessment of Pb, Zn, Cu, and Pb Isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Sci. Rep. 2019, 9, 5349. [Google Scholar] [CrossRef]
- Techogenic Soil—Soil of the Year 2020. Available online: http://ptg.sggw.pl/en/gleba-technogeniczna-gleba-roku-2020/ (accessed on 27 March 2020).
- Ali, M.H.; Mustafa, A.R.A.; El-Sheikh, A.A. Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environ. Earth Sci. 2016, 75, 1257. [Google Scholar] [CrossRef]
- Oka, G.A.; Thomas, L.; Lavkulich, L.M. Soil assessment for urban agriculture: A Vancouver case study. J. Soil Sci. Plant Nut. 2014, 14, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ye, Z.; Wang, W.; Jin, M. Traffic-Related Heavy Metal Contamination in Urban Areas and Correlation with Traffic Activity in China. Transp. Res. Rec. J. Transp. Res. Board 2016, 2571, 80–89. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Qinggeletu; Wu, Y. Health Risks and Contamination Levels of Heavy Metals in Dusts from Parks and Squares of an Industrial City in Semi-Arid Area of China. Int. J. Environ. Res. Public Health 2017, 14, 886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hua, P.; Krebs, P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environ. Pollut. 2017, 228, 158–168. [Google Scholar] [CrossRef]
- Sakan, S.M.; Đordević, D.S.; Manojlović, D.D. Trace elements as tracers of environmental pollution in the canal sediments (alluvial formation of the Danube River, Serbia). Environ. Monit. Assess. 2010, 167, 219–233. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y.; Sang, S.X. Accumulation and sources of heavy metals in urban topsoils: A case study from the city of Xuzhou, China. Environ. Geol. 2005, 48, 101–107. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the chemical forms of heavy metals in municipal sewage sludge as a critical element of ecological risk assessment in terms of its agricultural or natural use. Int. J. Environ. Res. Public Heatlh 2020, 17, 4640. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Kalicz, P.; Farsang, A.; Balázs, P.; Berki, I.; Bidló, A. Influence of human impacts on trace metal contamination in soils of two Hungarian cities. Sci. Total Environ. 2018, 637–638, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Senila, M.; Levei, E.A.; Senila, L.R. Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics. Chem. Cent. J. 2012, 6, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Wang, Y.; Liu, R.; Wang, M.; Zhang, Y. Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdai Urban Area. Atmosphere 2019, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, X.; Yang, G. Sources identification of heavy metals in urban topsoil from inside the Xi‘an Second Ringroad, NE China using multivariate statistical methods. Catena 2012, 98, 73–78. [Google Scholar] [CrossRef]
- Simon, E.; Vidic, A.; Braun, M.; Fábián, I.; Tóthmérész, B. Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ. Sci. Pollut. Res. Int. 2013, 20, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Ferri, R.; Hashim, D.; Smith, D.R.; Guazzetti, S.; Donna, F.; Ferretti, E.; Curatolo, M.; Moneta, C.; Beone, G.M.; Lucchini, R.G. Metal contamination of home garden soils and cultivated vegetable in the province of Breschia, Italy: Implications for human exposure. Sci. Total Environ. 2015, 518, 501–507. [Google Scholar] [CrossRef]
- Charzyński, P.; Hulisz, P.; Bednarek, R.; Piernik, A.; Winkler, M.; Chmurzyński, M. Edifisols – a new soil unit of technogenic soils. J. Soil. Sediment. 2015, 15, 1675–1686. [Google Scholar] [CrossRef]
- Dąbkowska-Naskręt, H.; Różański, S.; Bartkowiak, A. Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland. Soil Sci. Ann. 2016, 67, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Rahmonov, O.; Banaszek, J.; Pukowiec-Kurda, K. Relationship Between Heavy Metal Concentration in Japanese Knotweed (Reynoutria Japonica Houtt.) Tissues and Soil in Urban Parks in Southern Poland. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012145. [Google Scholar] [CrossRef] [Green Version]
- Różański, S.Ł.; Kwasowski, W.; Peñas Castejón, J.M.; Hardy, A. Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere 2018, 212, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Bielińska, E.J.; Mocek-Płóciniak, A. Impact on Ecochemical Soil Conditions on Selected Heavy Metals Content in Garden Allotment Vegetables. Pol. J. Environ. Stud. 2010, 19, 895–900. [Google Scholar]
- Kabała, C.; Chodak, T.; Szerszeń, L.; Karczewska, A.; Szopka, K.; Frątczak, K. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wrocław, Poland. Fresenius Environ. Bull. 2009, 18, 1118–1124, 1610–2304. [Google Scholar]
- Fritsch, C.; Giraudoux, P.; Coeurdassier, M.; Douay, F.; Raoul, F.; Pruvot, C.; Waterlot, C.; de Vaufleury, A.; Scheifler, R. Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 2010, 81, 141–155. [Google Scholar] [CrossRef]
- European Environment Agency. Topics. Soil. Contamination from Local Sources. Available online: https://www.eea.europa.eu/themes/soil/soil-threats (accessed on 28 June 2020).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome. 2015. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 17 August 2020).
- Minister of the Environment. Regulation of the Minister of the Environment of 1 September 2016 on the Method of the Contamination Assessment of the Earth Surface. In Journal of Laws of 2016; Item 1395, Wydawnictwo Sejmowe: Warsaw, Poland, 2016. (In Polish) [Google Scholar]
- Lamprecht, M. Origins and Spatial Development of Łódź. In Lviv and Łódź at the Turn of 20th Century. Historical Outline and Natural Environment, 1st ed.; Kobojek, E., Habrel, M., Eds.; Łódź University Press: Łódź, Poland, 2013; pp. 75–92. ISBN 978-83-7969-230-9. [Google Scholar]
- Marcińczak, S. The evolution of spatial patterns of residential segregation in Central European Cities: The Łódź Functional Urban Region from mature socialism to mature post-socialism. Cities 2012, 29, 300–309. [Google Scholar] [CrossRef]
- Wójcik, M. Selected problems of contemporary socio-spatial changes in peri-urban areas of the city of Łódź (Poland). Geogr. Pol. 2016, 89, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, M.; Tobiasz-Lis, P.; Dmochowska-Dudek, P. Uneven Development of a Post-Industrial City as Exemplified by Łódź (Poland). Mitteilungen der Österreichischen Geographischen Gesellschaft 2018, 160, 91–114. [Google Scholar] [CrossRef]
- Czarnowska, K.; Walczak, J. Distribution of zinc, lead and manganese in soils of Łódź City. Rocz. Glebozn. 1988, 39, 19–27. [Google Scholar]
- Czarnowska, K. Distribution of copper, chromium, nickel, cobalt and cadmium in soils of the city of Łódź. Rocz. Glebozn. 1992, 43, 41–49. [Google Scholar]
- Jankiewicz, B.; Ptaszyński, B.; Turek, A. Spectrophotometric Determination of Copper(II) in Samples of Soil from Selected Allotment Gardens in Lodz. Pol. J. Environ. Stud. 1999, 8, 35–38. [Google Scholar]
- Jankiewicz, B.; Ptaszyński, B.; Wieczorek, M. Spectrophotometric Determination of Cadmium(II) in Soil of Allotment Gardens in Łódź. Pol. J. Environ. Stud. 2000, 8, 83–86. [Google Scholar]
- Jankiewicz, B.; Ptaszyński, B.; Wieczorek, M. Spectrophotometric Determination of Lead in the Soil of Allotment Gardens in Łódź. Pol. J. Environ. Stud. 2001, 9, 123–126. [Google Scholar]
- Jankiewicz, B.; Adamczyk, D. Assessing Heavy Metal Content in Soils Surrounding the Łódź EC4 Power Plant, Poland. Pol. J. Environ. Stud. 2007, 16, 933–938. [Google Scholar]
- Jankiewicz, B.; Adamczyk, D. Assessing Heavy Metal Content in Soils Surrounding a Power Plant. Pol. J. Environ. Stud. 2010, 19, 849–853. [Google Scholar]
- Szynkowska, M.I.; Pawlaczyk, A.; Leśniewska, E.; Paryjczak, T. Toxic Metal Distribution in Rural and Urban Soil Samples Affected by Industry and Traffic. Pol. J. Environ. Stud. 2009, 18, 1141–1150. [Google Scholar]
- Polish Committee for Standardization. Polish Standard PN-ISO 11259 (2001). Soil Quality—Simplified Soil Description; PKN: Warsaw, Poland, 2001. [Google Scholar]
- Kwon, M.J.; Boyanov, M.I.; Yang, J.S.; Lee, S.; Hwang, Y.H.; Lee, J.Y.; Mishra, B.; Kemner, K.M. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy. Environ. Pollut. 2017, 226, 346–355. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. Polish Standard. PN-R-04016:1992. Agrochemical Soil Analyses—Determination of Assimilated Zinc Contents; PKN: Warsaw, Poland, 1992. (In Polish) [Google Scholar]
- Polish Committee for Standardization. Polish Standard. PN-R-04017:1992. Agrochemical Soil Analyses—Determination of Assimilated Copper Contents; PKN: Warsaw, Poland, 1992. (In Polish) [Google Scholar]
- Senila, M. Real and simulated bioavailability of lead in contaminated and uncontaminated soils. J. Environ. Health Sci. Eng. 2014, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Radecki-Pawlik, A.; Wałęga, A.; Młyński, D.; Młocek, W.; Kokoszka, R.; Tokarczyk, T.; Szalińska, W. Seasonality of mean flows as a potential tool for the assessment of ecological processes: Mountain rivers, Polish Carpathians. Sci. Total Environ. 2020, 716, 136988. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Gulan, L.; Milenkovic, B.; Zeremski, T.; Milic, G.; Vuckovic, B. Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Priština City, Kosovo and Metohija. Chemosphere 2017, 171, 415–426. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Jia, Y.; Yang, Z. Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. Sci. Total Environ. 2016, 557–558, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Karim, Z.; Qureschi, B.A.; Mumtaz, M.; Qureschi, S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecol. Indic. 2014, 42, 20–31. [Google Scholar] [CrossRef]
- Draszawka-Bolzan, B. Effect of pH and soil environment. WNOFNS 2017, 8, 50–60, 2543–5426. [Google Scholar]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Ander, E.L.; Johnson, C.C.; Cave, M.R.; Palumbo-Roe, B.; Nathanail, C.P.; Lark, R.M. Methodology for the determination of contaminants in English soil. Sci. Total Environ. 2013, 454–455, 604–618. [Google Scholar] [CrossRef] [Green Version]
- Jadczyszyn, J.; Niedźwiecki, J.; Debaene, G. Analysis of Agronomic Categories in Different Soil Texture Classification Systems. Pol. J. Soil Sci. 2016, 49, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Pasieczna, A. Atlas of Urban Soils Contamination in Poland, 1st ed.; Państwowy Instytut Geologiczny: Warsaw, Poland, 2003. [Google Scholar]
- Elnazer, A.A.; Salman, S.A.; Saleem, E.M.; Abu El Ella, E.M. Assessment of Heavy Metals Pollution and Bioavailability in Roadside Soil of Alexandria-Marsa Matruh Highway, Egypt. Int. J. Ecol. 2015, 2015, 689420. [Google Scholar] [CrossRef] [Green Version]
- Setälä, H.; Francini, G.; Allen, J.A.; Jumpponen, A.; Hui, N.; Kotze, D.J. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świetlik, R.; Strzelecka, M.; Trojanowska, M. Evaluation of Traffic-Related Heavy Metals Emissions Using Noise Barrier Road Dust Analysis. Pol. J. Environ. Stud. 2013, 22, 561–567. [Google Scholar]
- Abollino, O.; Malandrino, M.; Giacomino, A.; Mentasi, E. The role of chemometrics in single and sequential extraction assays: A review: Part I. Extraction procedures, uni- and bivariate techniques and multivariate variable reduction techniques for pattern recognition. Anal. Chim. Acta 2011, 688, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Sakson, G. Efficiency of heavy metals removal during roof runoff infiltration through vegetated soil. Environ. Prot. Eng. 2017, 43, 143–154. [Google Scholar] [CrossRef]
- Serneels, S.; Verdonck, T. Principal component analysis for data containing outliers and missing elements. Comput. Stat. Data Anal. 2008, 52, 1712–1727. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Wang, T.; Bonni, A.; Zhao, G. Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinform. 2020, 21, 269. [Google Scholar] [CrossRef] [PubMed]
- Rousseeuw, P.J.; Hubert, M. Anomaly detection by robust statistics. WIREs Data Mining Knowl. Discov. 2018, 8, 1236. [Google Scholar] [CrossRef] [Green Version]
- Statistical Office in Łódź. Data on Łódź. Geography, Meteorology. Geographic Location of the City. Available online: https://lodz.stat.gov.pl/en/information-about-voivodship/capital-of-voivodship-614/data-on-lodz-2018/ (accessed on 18 June 2020).
- Statistical Office in Łódź. Data on Łódź. Population. Population Based on Balances by Former Office Agencies of the City of Łódź Office (2010, 2015, 2016, 2017). Available online: https://lodz.stat.gov.pl/en/information-about-voivodship/capital-of-voivodship-614/population-data-on-lodz-2018/ (accessed on 27 June 2020).
- Voivodeship Inspectorate for Environmental Protection. Report on the State of Environment in the Łódzkie Voivodship Studied in 2017. Available online: https://www.wios.lodz.pl/Publikacje_WIOS,12 (accessed on 27 June 2020).
- Kondracki, J. Regional Geography of Poland, 3rd ed.; PWN: Warszawa, Poland, 2009; ISBN 9788301160227. (In Polish) [Google Scholar]
- Kobojek, E.; Pielesiak, I. Łódź in Geographical Space. In Lviv and Łódź at the Turn of 20th Century. Historical Outline and Natural Environment, 1st ed.; Kobojek, E., Habrel, M., Eds.; Łódź University Press: Łódź, Poland, 2013; pp. 21–40. ISBN 978-83-7969-230-9. [Google Scholar]
- Kobojek, E. Environmental Determinants of Development and Physiography of Łódź. In Lviv and Łódź at the Turn of 20th Century. Historical Outline and Natural Environment, 1st ed.; Kobojek, E., Habrel, M., Eds.; Łódź University Press: Łódź, Poland, 2013; pp. 111–132. ISBN 978-83-7969-230-9. [Google Scholar]
- Łódź Land Information System. The Łódź Atlas. Climate. Available online: http://www.mapa.lodz.pl/index.php?strona=atlas (accessed on 27 June 2020).
- Bartnik, A.; Marcinkowski, M. Spatial variability of precipitation in the area of Lodz. Acta Universitatis Lodziensis. Folia Geographica Physica 2015, 14, 5–15. (In Polish) [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Vlasov, D.V.; Korlyakov, I.D.; Kasimov, N.S. Contamination of urban soils with heavy metals in Moscow as affected by building development. Sci. Total Environ. 2018, 636, 854–863. [Google Scholar] [CrossRef]
- Bem, H.; Gallorini, M.; Rizzio, E.; Krzemińska, M. Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environ. Int. 2003, 29, 423–428. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. Polish Standard. PN-R-04031:1997. Agrochemical Soil Analyses—Sampling; PKN: Warsaw, Poland, 1997. (In Polish) [Google Scholar]
- Head Office of Geodesy and Cartography. Available online: www.gugik.gov.pl (accessed on 1 June 2020).
- Xie, Y.F.; Chen, T.B.; Lei, M.; Yang, J.; Guo, Q.J.; Song, B.; Zhou, X.Y. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 2011, 82, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Caravaca, F.; Lozano, Z.; Rodriguez-Caballero, G.; Roldán, A. Spatial shifts in soil microbial activity and degradation of pasture civer caused by prolonged exposure to cement dust. Land Degrad. Dev. 2017, 28, 1329–1335. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. Polish Standard (1998). PN-R-04032:1998. Soils and Mineral Grounds. Soil Sampling and Grain Size Distribution; PKN: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Polish Committee for Standardization. Polish Standard PN-ISO 10390. Soil Quality–Determination of pH; PKN: Warsaw, Poland, 1997. [Google Scholar]
- Pobi, K.K.; Satpati, S.; Dutta, S.; Nayek, S.; Saha, R.N.; Gupta, S. Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices. Appl. Water Sci. 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples are not are available from the authors. |
Header | Pb | Cd | Cu | Ni | Zn | pH |
---|---|---|---|---|---|---|
Mean | 21.6 | 0.34 | 8.39 | 2.10 | 42.8 | 6.0 |
Minimum | 4.05 | 0.05 | 0.77 | 0.33 | 2.45 | 3.5 |
Q1 | 10.4 | 0.15 | 3.10 | 0.90 | 9.58 | 5.0 |
Median | 15.2 | 0.24 | 5.20 | 1.48 | 16.7 | 6.4 |
Q3 | 23.6 | 0.42 | 11.6 | 2.96 | 60.9 | 7.0 |
Maximum | 163 | 2.09 | 48.4 | 7.63 | 358 | 8.0 |
Skewness | 4.39 | 3.13 | 2.45 | 1.43 | 2.89 | −0.59 |
Kurtosis | 24.5 | 12.9 | 6.91 | 1.81 | 10.4 | −1.01 |
K–S p | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 | <0.05 |
CV [%] | 101 | 94.1 | 108 | 76.5 | 140 | 20.7 |
Pb | Cd | Cu | Ni | Zn | pH | |
---|---|---|---|---|---|---|
Cluster 1 | 20.0–52.3 | 0.36–0.74 | 6.13–33.4 | 2.43–4.83 | 47.3–208 | 5.2–7.2 |
mean | 37.2 | 0.55 | 17.5 | 3.46 | 102 | 6.8 |
Cluster 2a | 10.4–27.4 | 0.19–0.49 | 4.09–18.4 | 1.06–5.92 | 12.0–91.6 | 6.0–7.4 |
mean | 18.3 | 0.34 | 9.19 | 2.56 | 42.6 | 6.8 |
Cluster 2b | 6.53–22.7 | 0.11–0.28 | 1.14–7.62 | 0.53–2.00 | 3.84–21.2 | 6.1–7.6 |
mean | 13.0 | 0.19 | 4.34 | 1.12 | 13.5 | 6.7 |
Cluster 2c | 4.05–16.8 | 0.08–0.25 | 0.77–3.97 | 0.43–1.42 | 3.07–20.3 | 5.0–6.0 |
mean | 11.6 | 0.16 | 2.61 | 1.01 | 10.4 | 5.4 |
Cluster 2d | 7.89–24.9 | 0.05–0.24 | 1.09–8.11 | 0.33–3.60 | 2.45–23.1 | 3.5–4.6 |
mean | 12.8 | 0.16 | 3.11 | 1.14 | 8.51 | 4.1 |
Site 52 | 163 | 1.29 | 41.8 | 6.52 | 204 | 5.2 |
Site 4 | 103 | 2.09 | 16.4 | 6.26 | 358 | 8.0 |
Site 49 | 34.4 | 1.01 | 16.3 | 6.09 | 105 | 7.3 |
Site 44 | 20.4 | 1.32 | 12.6 | 7.63 | 183 | 7.6 |
Site 2 | 48.6 | 0.76 | 48.4 | 3.89 | 65.2 | 4.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, K.; Turek, A.; Szczesio, M.; Wolf, W.M. Comprehensive Evaluation of Metal Pollution in Urban Soils of a Post-Industrial City—A Case of Łódź, Poland. Molecules 2020, 25, 4350. https://doi.org/10.3390/molecules25184350
Wieczorek K, Turek A, Szczesio M, Wolf WM. Comprehensive Evaluation of Metal Pollution in Urban Soils of a Post-Industrial City—A Case of Łódź, Poland. Molecules. 2020; 25(18):4350. https://doi.org/10.3390/molecules25184350
Chicago/Turabian StyleWieczorek, Kinga, Anna Turek, Małgorzata Szczesio, and Wojciech M. Wolf. 2020. "Comprehensive Evaluation of Metal Pollution in Urban Soils of a Post-Industrial City—A Case of Łódź, Poland" Molecules 25, no. 18: 4350. https://doi.org/10.3390/molecules25184350
APA StyleWieczorek, K., Turek, A., Szczesio, M., & Wolf, W. M. (2020). Comprehensive Evaluation of Metal Pollution in Urban Soils of a Post-Industrial City—A Case of Łódź, Poland. Molecules, 25(18), 4350. https://doi.org/10.3390/molecules25184350