Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour.
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of New Compounds
2.2. Antiviral Activity against Influenza A Virus (IVA)
3. Discussion
4. Materials and Methods
4.1. General
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Spectroscopic Data
4.5. HPLC-DAD Analysis
4.6. Anti-Inflluenza Virus Assay
4.7. Time-Of-Addition Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, R.; Liu, T.; Liu, M.; Chen, F.; Liu, S.; Yang, J. Anti-influenza A virus activity of dendrobine and its mechanism of action. J. Agric. Food Chem. 2017, 65, 3665–3674. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, Y. Host immune response to influenza A virus infection. Front. Immunol. 2018, 9, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Galvin, H.D.; Haw, T.Y.; Nutsford, A.N.; Husain, M. Drug Resistance in Influenza A Virus: The Epidemiology and Management. Infect. Drug Resist. 2017, 10, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Abundo, M.E.C.; Lee, C.W. Herbal medicines with antiviral activity against the influenza virus, a systematic review. Am. J. Chin. Med. 2018, 46, 1663–1700. [Google Scholar] [CrossRef] [PubMed]
- George, W.; Yang, S.Z. Convolvulaceae. In Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan, Ed.; Department of Botany, National Taiwan University: Taipei, Taiwan, 1998; Volume 4, pp. 344–347. [Google Scholar]
- Lin, M.K.; Lee, M.S.; Chang, W.T.; You, B.J. Extract and Method for Preparing the Same and Uses of Cuscuta sp. TWI382845B, 21 January 2013. [Google Scholar]
- Donnapee, S.; Li, J.; Yang, X.; Ge, A.H.; Donkor, P.O.; Gao, X.; Chang, Y. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J. Ethnopharmacol. 2014, 157, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C.; Chang, W.T.; Lee, M.S.; Chiu, Y.J.; Chao, W.K.; Lin, Y.C.; Lin, M.K.; Peng, W.H. Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice. Am. J. Chin. Med. 2014, 42, 223–242. [Google Scholar] [CrossRef]
- Ye, M.; Yan, Y.; Guo, D.A. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1469–1484. [Google Scholar] [CrossRef]
- Du, X.M.; Kohinata, K.; Kawasaki, T.; Guo, Y.T.; Miyahara, K. Components of the ether-insoluble resin glycoside like fraction from Cuscuta chinensis. Phytochem. 1998, 48, 843–850. [Google Scholar] [CrossRef]
- Amarasinghe, N.R.; Jayasinghe, U.; Hara, N.; Fujimoto, Y. Flacourside, a new 4-oxo-2-cyclopentenylmethyl glucoside from the fruit juice of Flacourtia indica. Food Chem. 2007, 102, 95–97. [Google Scholar] [CrossRef]
- Huang, H.C.; Chao, C.L.; Liaw, C.C.; Hwang, S.Y.; Kuo, Y.H.; Chang, T.C.; Chao, C.H.; Chen, C.J.; Kuo, Y.H. Hypoglycemic constituents isolated from Trapa natans L. pericarps. J. Agric. Food Chem. 2016, 64, 3794–3803. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Ali, S. Hemiterpene glucosides and other constituents from Spiraea canescens. Phytochemistry 2009, 70, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Matsufuji, H.; Otsuki, T.; Takeda, T.; Chino, M.; Takeda, M. Identification of reaction products of acylated anthocyanins from red radish with peroxyl radicals. J. Agric. Food Chem. 2003, 51, 3157–3161. [Google Scholar] [CrossRef] [PubMed]
- Feistel, F.; Paetz, C.; Lorenz, S.; Beran, F.; Kunert, G.; Schneider, B. Idesia polycarpa (Salicaceae) leaf constituents and their toxic effect on Cerura vinula and Lymantria dispar (Lepidoptera) larvae. Phytochemistry 2017, 143, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mangelinckx, S.; Ma, L.; Wang, Z.; Li, W.; De Kimpe, N. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia 2014, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.X.; Chen, Y.J.; Zhao, J.; Song, Q.Y.; Gao, K. Chemical constituents from the aerial parts of Triosteum pinnatifidum. Chem. Nat. Compd. 2013, 49, 95–96. [Google Scholar] [CrossRef]
- Wang, A.X.; Zhang, Q.; Jia, Z.J. Phenylpropanosids, lignans and other constituents from Cremanthodium ellisii. Pharmazie 2005, 36, 889–892. [Google Scholar] [CrossRef]
- Wang, G.K.; Bin Lin, B.; Rao, R.; Zhu, K.; Qin, X.Y.; Xie, G.Y.; Qin, M. A new lignan with anti-HBV activity from the roots of Bombax ceiba. Nat. Prod. Res. 2013, 27, 1348–1352. [Google Scholar] [CrossRef]
- Chen, J.J.; Fang, H.Y.; Duh, C.Y.; Chen, I.S. New indolopyridoquinazoline, benzo[c]phenanthridines and cytotoxic constituents from Zanthoxylum integrifoliolum. Planta Medica 2005, 71, 470–475. [Google Scholar] [CrossRef]
- Achanta, S.; Liautard, V.; Paugh, R.; Organ, M.G. The development of a general strategy for the synthesis of tyramine-based natural products by using continuous flow techniques. Chem. Eur. J. 2010, 16, 12797–12800. [Google Scholar] [CrossRef]
- Hsieh, T.J.; Chang, F.R.; Chia, Y.C.; Chen, C.Y.; Chiu, H.F.; Wu, Y.C. Cytotoxic constituents of the fruits of Cananga odorata. J. Nat. Prod. 2001, 64, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Goda, Y.; Shibuya, M.; Sankawa, U. Inhibitors of the arachidonate cascade from Allium chinense and their effect on in vitro platelet aggregation. Chem. Pharm. Bull. 1987, 35, 2668–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, O.; Piovano, M.; Garbarino, J.; Hellwing, V.; Breitmaier, E. Tropane alkaloids from Schizanthus litoralis. Phytochemistry 1996, 43, 709–713. [Google Scholar] [CrossRef]
- Liao, J.; Yuan, C.; Di, Y.; He, H.; Hu, X. A new indole alkaloid from the fruits of Capparis masaikai. Asian J. Chem. 2014, 26, 4504–4506. [Google Scholar] [CrossRef]
- Tian, S.; Yang, Y.; Liu, K.; Xiong, Z.; Xu, L.; Zhao, L. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Nat. Prod. Res. 2013, 28, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Zhang, L.J.; Chen, R.Y.; Kuo, L.M.Y.; Huang, J.P.; Huang, H.C.; Lee, K.H.; Wu, Y.C.; Kuo, Y.H. Antioxidant and anti-inflammatory phenylpropanoid derivatives from Calamus quiquesetinervius. J. Nat. Prod. 2010, 73, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.L.; Huang, H.C.; Lin, H.C.; Chang, T.C.; Chang, W.L. Sesquiterpenes from Baizhu stimulate glucose uptake by activating AMPK and PI3K. Am. J. Chin. Med. 2016, 44, 963–979. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wang, W.Y.; Kuo, Y.H.; Chen, C.F. Nonsteroidal constituents from Solanum Incanum L. J. Chin. Chem. Soc. 2000, 47, 247–251. [Google Scholar] [CrossRef]
- Asres, K.; Mascagni, P.; O’Neill, M.J.; Phillipson, D. Isoflavonoids from Bolusanthus speciosus (Bolus) Harms Leguminosae. Zeitschrift für Naturforschung C 1985, 40, 617–620. [Google Scholar] [CrossRef]
- Von Massow, F.; Smith, M.A.R. Indirect 13C–1H coupling in asymmetrically trisubstituted benzenes: A carbon-13 nuclear magnetic resonance study. J. Chem. Soc. Perkin Trans. 2 1976, 2, 977. [Google Scholar] [CrossRef]
- Chung, C.P.; Hsia, S.M.; Lee, M.Y.; Chen, H.J.; Cheng, F.; Chan, L.C.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Gastroprotective activities of Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on the growth of the stomach cancer AGS cell line and indomethacin-induced gastric ulcers. J. Agric. Food Chem. 2011, 59, 6025–6033. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.H.; Perlmutter, P.; Wijesundera, C. Practical syntheses of triacylglycerol regioisomers containing long-chain polyunsaturated fatty acids. J. Am. Oil Chem. Soc. 2006, 84, 11–21. [Google Scholar] [CrossRef]
- Li, Y.H.; Lai, C.Y.; Su, M.C.; Cheng, J.C.; Chang, Y.S. Antiviral activity of Portulaca oleracea L. against influenza A viruses. J. Ethnopharmacol. 2019, 241, 112013. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1, 8, 10, 11, 16, 17, 22, 26–30 are available from the authors. |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δH, J in Hz | ||||
1 | 5.05 (d, 7.5) | 5.05 (d, 7.5) | 5.34 (d, 8.0) | 5.25 (d, 8.0) |
2 | 3.46 (dd, 9.0, 7.5) | 3.48 (dd, 8.5, 7.5) | 5.07 (dd, 9.0, 8.0) | 5.03 (dd, 9.0, 8.0) |
3 | 3.48 (t, 9.0) | 3.50 (t, 8.5) | 3.71 (t, 9.0) | 3.64 (t, 9.0) |
4 | 3.37 (t, 9.0) | 3.39 (t, 8.5) | 3.51 (br d, 9.0) | 3.47 (t, 9.0) |
5 | 3.77 (ddd, 9.0, 7.5, 2.0) | 3.78 (ddd, 8.5, 7.5, 2.0) | 3.57 (m) a | 3.53 (m) a |
6 | 4.23 (dd, 12.0, 7.5) 4.55 (dd, 12.0, 2.0) | 4.25 (dd, 12.0, 7.5) 4.57 (dd, 12.0, 2.0) | 3.74 (dd, 12.0, 5.5) 3.96 (dd, 12.0, 2.0) | 3.71 (dd, 12.0, 5.0) 3.90 (br d, 12.0) |
2′ | 5.72 (d, 1.0) | 5.74 (d, 2.0) | 5.68 (d, 2.0) | 5.66 (br s) |
3′ | 6.09 (d, 1.0) | 6.08 (d, 2.0) | 5.98 (br s) | 5.95 (br s) |
4′ | - | - | - | - |
5′ | 2.20 (s) | 2.15 (s) | 2.16 (s) | 2.18 (s) |
2″ | 7.56 (d, 8.5) | 7.24 (d, 2.0) | 7.43 (d, 8.5) | 7.63 (d, 8.5) |
3″ | 6.79 (d, 8.5) | - | 6.79 (d, 8.5) | 6.73 (d, 8.5) |
4″ | - | - | - | |
5″ | 6.79 (d, 8.5) | 6.81 (d, 8.5) | 6.79 (d, 8.5) | 6.73 (d, 8.5) |
6″ | 7.56 (d, 8.5) | 7.09 (dd, 8.5, 2.0) | 7.43 (d, 8.5) | 7.73 (d, 8.5) |
7″ | 7.60 (d, 16.0) | 7.62 (d, 16.0) | 7.67 (d, 16.0) | 6.90 (d, 12.5) |
8″ | 6.37 (d, 16.0) | 6.42 (d, 16.0) | 6.36 (d, 16.0) | 5.80 (d, 12.5) |
OCH3 | - | 3.92 s | - | - |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δc | ||||
1 | 100.9 | 100.8 | 98.9 | 98.9 |
2 | 74.5 | 74.4 | 74.4 | 74.4 |
3 | 77.8 | 77.8 | 75.9 | 76.0 |
4 | 71.7 | 71.7 | 71.1 | 71.2 |
5 | 76.4 | 76.1 | 78.9 | 78.9 |
6 | 64.7 | 64.7 | 62.2 | 62.2 |
1′ | 167.5 | 167.3 | 167.3 | 167.3 |
2′ | 92.0 | 92.1 | 91.9 | 91.9 |
3′ | 101.6 | 101.6 | 101.4 | 101.4 |
4′ | 164.9 | 164.8 | 165.1 | 165.1 |
5′ | 19.8 | 19.9 | 19.8 | 19.8 |
6′ | 171.4 | 171.3 | 171.0 | 171.5 |
1″ | 127.3 | 127.7 | 127.1 | 131.4 |
2″ | 131.5 | 111.9 | 131.4 | 133.8 |
3″ | 116.9 | 149.6 | 117.0 | 116.2 |
4″ | 161.5 | 151.0 | 161.5 | 162.3 |
5″ | 116.9 | 116.6 | 117.0 | 116.2 |
6″ | 131.5 | 124.6 | 131.4 | 133.8 |
7″ | 147.1 | 147.4 | 147.5 | 147.5 |
8″ | 114.9 | 115.1 | 114.7 | 115.9 |
9″ | 169.1 | 169.1 | 168.2 | 168.2 |
OCH3 | - | 56.7 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.-C.; Liaw, C.-C.; Lin, M.-K.; Chen, C.-J.; Chao, C.-L.; Chao, C.-H.; Kuo, Y.-H.; Chiu, Y.-P.; Peng, Y.-S.; Huang, H.-C. Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules 2020, 25, 4427. https://doi.org/10.3390/molecules25194427
Cheng J-C, Liaw C-C, Lin M-K, Chen C-J, Chao C-L, Chao C-H, Kuo Y-H, Chiu Y-P, Peng Y-S, Huang H-C. Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules. 2020; 25(19):4427. https://doi.org/10.3390/molecules25194427
Chicago/Turabian StyleCheng, Ju-Chien, Chia-Ching Liaw, Ming-Kuem Lin, Chao-Jung Chen, Chien-Liang Chao, Chih-Hua Chao, Yueh-Hsiung Kuo, Yen-Po Chiu, Yu-Shin Peng, and Hui-Chi Huang. 2020. "Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour." Molecules 25, no. 19: 4427. https://doi.org/10.3390/molecules25194427
APA StyleCheng, J.-C., Liaw, C.-C., Lin, M.-K., Chen, C.-J., Chao, C.-L., Chao, C.-H., Kuo, Y.-H., Chiu, Y.-P., Peng, Y.-S., & Huang, H.-C. (2020). Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules, 25(19), 4427. https://doi.org/10.3390/molecules25194427