Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods
Abstract
:1. Introduction
2. The Concept of the Chemical Odorant Space
3. Odor-Active Phenols in Food
4. Perception of Odor-Active Phenols
5. Generation of Volatile Phenols in Food
5.1. De Novo Biosynthesis in Planta
5.2. Microbial Formation of Volatile Phenols
5.3. Thermal Formation of Volatile Phenols During Food Processing
6. Glycosidically Bound Volatile Phenols in Food
6.1. Structures of Glycosidically Bound Phenols
6.2. Biosynthesis of Glycosidically Bound Phenols
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buckingham, J. Dictionary of Natural Products Version 8.1, 1st ed.; Chapman & Hall/CRC: London, UK, 2013; ISBN 978-0-412-49150-4. [Google Scholar]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensalem, J.; Dudonné, S.; Gaudout, D.; Servant, L.; Calon, F.; Desjardins, Y.; Layé, S.; Lafenetre, P.; Pallet, V. Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. J. Nutr. Sci. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carregosa, D.; Carecho, R.; Figueira, I.N.; Santos, C. Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation. J. Agric. Food Chem. 2020, 68, 1790–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Márquez Campos, E.; Stehle, P.; Simon, M.-C. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019, 11, 2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, A.; Minihane, A.-M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr. 2017, 105, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Weber, F.; Boch, K.; Schieber, A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT 2017, 75, 72–77. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Linden, M.; Brinckmann, C.; Feuereisen, M.M.; Review; Schieber, A. Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Res. Int. 2020, 133, 109134. [Google Scholar] [CrossRef]
- Frank, S.; Wollmann, N.; Schieberle, P.; Hofmann, T. Reconstitution of the Flavor Signature of Dornfelder Red Wine on the Basis of the Natural Concentrations of Its Key Aroma and Taste Compounds. J. Agric. Food Chem. 2011, 59, 8866–8874. [Google Scholar] [CrossRef] [PubMed]
- Schöbel, N.; Radtke, D.; Kyereme, J.; Wollmann, N.; Cichy, A.; Obst, K.; Kallweit, K.; Kletke, O.; Minovi, A.; Dazert, S.; et al. Astringency Is a Trigeminal Sensation That Involves the Activation of G Protein–Coupled Signaling by Phenolic Compounds. Chem. Senses 2014, 39, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, J.C.; Hofmann, T. Orosensory-Directed Identification of Astringent Mouthfeel and Bitter-Tasting Compounds in Red Wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Maarse, H.; Visscher, C.A. Volatile Compounds in Food: Qualitative and Quantitative Data; TNO-CIVO Food Analysis Institute: Zeist, The Netherlands, 1989; ISBN 978-90-6743-168-2. [Google Scholar]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef]
- Block, E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. J.Agric. Food Chem. 2018. [Google Scholar] [CrossRef]
- Trimmer, C.; Keller, A.; Murphy, N.R.; Snyder, L.L.; Willer, J.R.; Nagai, M.H.; Katsanis, N.; Vosshall, L.B.; Matsunami, H.; Mainland, J.D. Genetic variation across the human olfactory receptor repertoire alters odor perception. Proc. Natl. Acad. Sci. USA 2019, 116, 9475–9480. [Google Scholar] [CrossRef] [Green Version]
- Veithen, A.; Philippeau, M.; Chatelain, P. High Throughput Receptor Screening Assays. In Springer Handbook of Odor; Buettner, A., Ed.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2017; pp. 57–58. ISBN 978-3-319-26932-0. [Google Scholar]
- Atkinson, R.G. Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. J. Agric. Food Chem. 2018, 66, 2259–2272. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, J.R.; Dudareva, N. A Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Koeduka, T.; Baiga, T.J.; Noel, J.P.; Pichersky, E. Biosynthesis of t-Anethole in Anise: Characterization of t-Anol/Isoeugenol Synthase and an O-Methyltransferase Specific for a C7-C8 Propenyl Side Chain. Plant Physiol. 2009, 149, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Vassão, D.G.; Gang, D.R.; Koeduka, T.; Jackson, B.; Pichersky, E.; Davin, L.B.; Lewis, N.G. Chavicol formation in sweet basil (Ocimum basilicum): Cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem. 2006, 4, 2733–2744. [Google Scholar] [CrossRef] [PubMed]
- Louie, G.V.; Baiga, T.J.; Bowman, M.E.; Koeduka, T.; Taylor, J.H.; Spassova, S.M.; Pichersky, E.; Noel, J.P. Structure and Reaction Mechanism of Basil Eugenol Synthase. PLoS ONE 2007, 2, e993. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Kurtzer, R.; Skowranek, K.; Kießling, P.; Fridman, E.; Pichersky, E.; Schwab, W. Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metab. Eng. 2011, 13, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Medina-Puche, L.; Molina-Hidalgo, F.J.; Boersma, M.; Schuurink, R.C.; López-Vidriero, I.; Solano, R.; Franco-Zorrilla, J.-M.; Caballero, J.L.; Blanco-Portales, R.; Muñoz-Blanco, J. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. Plant Physiol. 2015, 168, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Gallage, N.J.; Møller, B.L. Vanilla: The Most Popular Flavour. In Biotechnology of Natural Products; Schwab, W., Lange, B.M., Wüst, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–24. ISBN 978-3-319-67903-7. [Google Scholar]
- Gallage, N.J.; Hansen, E.H.; Kannangara, R.; Olsen, C.E.; Motawia, M.S.; Jørgensen, K.; Holme, I.; Hebelstrup, K.; Grisoni, M.; Møller, B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun. 2014, 5, 4037. [Google Scholar] [CrossRef] [Green Version]
- Yahyaa, M.; Rachmany, D.; Shaltiel-Harpaz, L.; Nawade, B.; Sadeh, A.; Ibdah, M.; Gerchman, Y.; Holland, D.; Ibdah, M. A Pyrus communis gene for p-hydroxystyrene biosynthesis, has a role in defense against the pear psylla Cacopsylla biden. Phytochemistry 2019, 161, 107–116. [Google Scholar] [CrossRef]
- Wüst, M. Biosynthesis of Plant-Derived Odorants. In Springer Handbook of Odor; Buettner, A., Ed.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–10. ISBN 978-3-319-26932-0. [Google Scholar]
- Lentz, M. The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor. Fermentation 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Malfeito-Ferreira, M. Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where do We Stand Now? Beverages 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Licker, J.L.; Acree, T.E.; Henick-Kling, T. What Is “Brett” (Brettanomyces) Flavor?: A Preliminary Investigation. In Chemistry of Wine Flavor; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1998; Volume 714, pp. 96–115. ISBN 978-0-8412-3592-2. [Google Scholar]
- Shisler, K.A.; Broderick, J.B. Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions. Arch. Biochem. Biophys. 2014, 546, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Martins, B.M.; Blaser, M.; Feliks, M.; Ullmann, G.M.; Buckel, W.; Selmer, T. Structural Basis for a Kolbe-Type Decarboxylation Catalyzed by a Glycyl Radical Enzyme. J. Am. Chem. Soc. 2011, 133, 14666–14674. [Google Scholar] [CrossRef]
- Jiang, D.; Peterson, D.G. Role of hydroxycinnamic acids in food flavor: A brief overview. Phytochem. Rev. 2010, 9, 187–193. [Google Scholar] [CrossRef]
- Schoenauer, S.; Schieberle, P. Characterization of the Key Aroma Compounds in the Crust of Soft Pretzels by Application of the Sensomics Concept. J. Agric. Food Chem. 2019, 67, 7110–7119. [Google Scholar] [CrossRef] [PubMed]
- Dorfner, R.; Ferge, T.; Kettrup, A.; Zimmermann, R.; Yeretzian, C. Real-Time Monitoring of 4-Vinylguaiacol, Guaiacol, and Phenol during Coffee Roasting by Resonant Laser Ionization Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 5768–5773. [Google Scholar] [CrossRef] [PubMed]
- Maga, J.A. The flavor chemistry of wood smoke. Food Rev. Int. 1987, 3, 139–183. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci.Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.-Q.; Reeves, M.J.; He, F. A Review of Polyphenolics in Oak Woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Sarry, J.-E.; Günata, Z. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Schwab, W.; Fischer, T.C.; Giri, A.; Wuest, M. Potential applications of glucosyltransferases in terpene glucoside production: Impacts on the use of aroma and fragrance. Appl. Microbiol. Biotechnol. 2015, 99, 165–174. [Google Scholar] [CrossRef]
- Schwab, W.; Fischer, T.; Wuest, M. Terpene glucoside production: Improved biocatalytic processes using glycosyltransferases. Eng. Life Sci. 2015, 15, 376–386. [Google Scholar] [CrossRef]
- Bönisch, F.; Frotscher, J.; Stanitzek, S.; Rühl, E.; Wüst, M.; Bitz, O.; Schwab, W. A UDP-Glucose: Monoterpenol Glucosyltransferase Adds to the Chemical Diversity of the Grapevine Metabolome. Plant Physiol. 2014, 165, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Bönisch, F.; Frotscher, J.; Stanitzek, S.; Rühl, E.; Wüst, M.; Bitz, O.; Schwab, W. Activity-Based Profiling of a Physiologic Aglycone Library Reveals Sugar Acceptor Promiscuity of Family 1 UDP-Glucosyltransferases from Grape. Plant Physiol. 2014, 166, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Bönisch, F.; Frotscher, J.; Stanitzek, S.; Rühl, E.; Bitz, O.; Schwab, W.; Wüst, M. Enantioselectivities of uridine diphosphate-glucose: Monoterpenol glucosyltransferases from grapevine (Vitis vinifera L.). In Importance of Chirality to Flavor Compounds; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; Volume 1212, pp. 77–83. ISBN 13: 9780841231146. [Google Scholar]
- Härtl, K.; Huang, F.-C.; Giri, A.P.; Franz-Oberdorf, K.; Frotscher, J.; Shao, Y.; Hoffmann, T.; Schwab, W. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase. J. Agric. Food Chem. 2017, 65, 5681–5689. [Google Scholar] [CrossRef]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of Several Volatile Phenols and Their Glycoconjugates to Smoke-Related Sensory Properties of Red Wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of Smoke-Derived Volatile Phenols in Grapes as a Consequence of Grapevine Exposure to Bushfire Smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- Wüst, M. Smell of Stress: Identification of Induced Biochemical Pathways Affecting the Volatile Composition and Flavor Quality of Crops. J. Agric. Food Chem. 2018, 66, 3616–3618. [Google Scholar] [CrossRef] [PubMed]
Structure | OR10G3 | OR10G4 | OR10G7 | OR10G9 |
---|---|---|---|---|
1++ | +++ | ++ | ++ | |
++ | ++ | ++ | ++ | |
++++ | ||||
+ | ++++ | |||
++ | ++ | ++++ | + | |
++ | ++ | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schieber, A.; Wüst, M. Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods. Molecules 2020, 25, 4529. https://doi.org/10.3390/molecules25194529
Schieber A, Wüst M. Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods. Molecules. 2020; 25(19):4529. https://doi.org/10.3390/molecules25194529
Chicago/Turabian StyleSchieber, Andreas, and Matthias Wüst. 2020. "Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods" Molecules 25, no. 19: 4529. https://doi.org/10.3390/molecules25194529
APA StyleSchieber, A., & Wüst, M. (2020). Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods. Molecules, 25(19), 4529. https://doi.org/10.3390/molecules25194529