The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selected Physical Properties of Biomass
2.2. Selected Chemical Properties of Biomass
2.3. Biological Properties of Biomass
3. Materials and Methods
3.1. Reactor Set-up and Operation
3.2. Analytical Method
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babko, R.; Jaromin-Gleń, K.; Łagód, G.; Pawłowska, M.; Pawłowski, A. Effect of Drilling Mud Addition on Activated Sludge and Processes in Sequencing Batch Reactors. Desalin. Water Treat. 2016, 57, 1490–1498. [Google Scholar] [CrossRef]
- Masłoń, A.; Tomaszek, J.A.; Zamorska, J.; Zdeb, M.; Piech, A.; Opaliński, I.; Jurczyk, Ł. The Impact of Powdered Keramsite on Activated Sludge and Wastewater Treatment in a Sequencing Batch Reactor. J. Environ. Manag. 2019, 237, 305–312. [Google Scholar] [CrossRef]
- Chmielowski, K.; Czekański, A.; Leśniańska, A. Using Data Mining to Predict Sludgeand Filamentous Microorganism Sedimentation. Pol. J. Environ. Stud. 2019, 28, 3105–3113. [Google Scholar] [CrossRef]
- Gao, D.; Liu, L.; Liang, H.; Wu, W.-M. Aerobic Granular Sludge: Characterization, Mechanism of Granulation and Application to Wastewater Treatment. Crit. Rev. Biotechnol. 2011, 31, 137–152. [Google Scholar] [CrossRef]
- Czarnota, J.; Tomaszek, J.A.; Miąsik, M.; Zdeb, M. Aerobic Granular Sludge—Factors Affecting the Granulation Process in the Sequencing Batch Reactors. JCEEA 2013, 161–171. [Google Scholar] [CrossRef]
- Wilén, B.-M.; Liébana, R.; Persson, F.; Modin, O.; Hermansson, M. The Mechanisms of Granulation of Activated Sludge in Wastewater Treatment, its Optimization, and Impact on Effluent Quality. Appl. Microbiol. Biotechnol. 2018, 102, 5005–5020. [Google Scholar] [CrossRef] [Green Version]
- Jahn, L.; Svardal, K.; Krampe, J. Comparison of Aerobic Granulation in SBR and Continuous-Flow Plants. J. Environ. Manag. 2019, 231, 953–961. [Google Scholar] [CrossRef]
- Czarnota, J.; Masłoń, A. Biogranulation and Physical Properties of Aerobic Granules in Reactors at Low Organic Loading Rate and with Powdered Ceramsite Added. J. Ecol. Eng. 2019, 20, 202–210. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Pinheiro, H.M.; van Loosdrecht, M.C.M.; Lourenço, N.D. Stability of Aerobic Granules During Long-Term Bioreactor Operation. Biotechnol. Adv. 2018, 36, 228–246. [Google Scholar] [CrossRef]
- de Kreuk, M.K.; Kishida, N.; van Loosdrecht, M.C.M. Aerobic Granular Sludge—State of the Art. Water Sci. Technol. 2007, 55, 75–81. [Google Scholar] [CrossRef]
- Verawaty, M.; Pijuan, M.; Yuan, Z.; Bond, P.L. Determining the Mechanisms for Aerobic Granulation from Mixed Seed of Floccular and Crushed Granules in Activated Sludge Wastewater Treatment. Water Res. 2012, 46, 761–771. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Tay, J.-H. Characteristics and Stability of Aerobic Granules Cultivated with Different Starvation Time. Appl. Microbiol. Biotechnol. 2007, 75, 205–210. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Kiran Kumar Reddy, G. Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications. Bioresour. Technol. 2018, 247, 1128–1143. [Google Scholar] [CrossRef]
- Kończak, B. The Role Extracellular Polymeric Substances in Formation and Activity Mechanisms of Granular Sludge under Aerobic Conditions. Ph.D. Thesis, The Silesian University of Technology, Gliwice, Poland, 2011; pp. 1–148. [Google Scholar]
- Wang, H.; Song, Q.; Wang, J.; Zhang, H.; He, Q.; Zhang, W.; Song, J.; Zhou, J.; Li, H. Simultaneous Nitrification, Denitrification and Phosphorus Removal in An Aerobic Granular Sludge Sequencing Batch Reactor with High Dissolved Oxygen: Effects of Carbon to Nitrogen Ratios. Sci. Total Environ. 2018, 642, 1145–1152. [Google Scholar] [CrossRef]
- Tu, X.; Song, Y.; Yu, H.; Zeng, P.; Liu, R. Fractionation and Characterization of Dissolved Extracellular and Intracellular Products Derived from Floccular Sludge and Aerobic Granules. Bioresour. Technol. 2012, 123, 55–61. [Google Scholar] [CrossRef]
- Minh, N.D. Treatment of High-Strength Organic Wastewater Using an Aerobic Granular System with Baffled Membrane Bioreactor AIT Thesis. Master’s Thesis, Asian Institute of Technology, Bangkok, Thailand, 2006; pp. 1–119. [Google Scholar]
- Wang, S.-G.; Gai, L.-H.; Zhao, L.-J.; Fan, M.-H.; Gong, W.-X.; Gao, B.-Y.; Ma, Y. Aerobic Granules for Low-Strength Wastewater Treatment: Formation, Structure, and Microbial Community. J. Chem. Technol. Biot. 2009, 84, 1015–1020. [Google Scholar] [CrossRef]
- De Sousa Rollemberg, S.L.; Mendes Barros, A.R.; Milen Firmino, P.I.; Bezerra dos Santos, A. Aerobic Granular Sludge: Cultivation Parameters and Removal Mechanisms. Bioresour. Technol. 2018, 270, 678–688. [Google Scholar] [CrossRef]
- Czarnota, J.; Masłoń, A.; Zdeb, M. Powdered Keramsite as Unconventional Method of AGS Technology Support in GSBR Reactor with Minimum-Optimum OLR. E3S Web Conf. 2018, 44, 00024. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Ji, M.; Li, G.; Qin, F. Powdered Activated Carbon (PAC) Addition for Enhancement of Aerobically Grown Microbial Granules Treating Landfill Leachate. IEEE Xplore 2010, 805–808. [Google Scholar] [CrossRef]
- Li, A.J.; Li, X.Y.; Yu, H.G. Aerobic Sludge Granulation Facilitated by Activated Carbon for Partial Nitrification Treatment of Ammonia-Rich Wastewater. Chem. Eng. J. 2013, 218, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, J.; Wang, D.; Chen, T.; Ma, T.; Wang, Z.; Zhuo, W. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors. Int. J. Environ. Res. Public Health 2015, 12, 10056–10065. [Google Scholar] [CrossRef]
- Li, A.J.; Li, X.Y.; Yu, H.Q. Granular Activated Carbon for Aerobic Sludge Granulation in a Bioreactor with a Low-Strength Wastewater Influent. Sep. Purify Technol. 2011, 80, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhao, H.; Hu, M.; Yu, H.; Xu, X.; Vidonish, J. Granular Activated Carbon as Nucleating Agent for Aerobic Sludge Granulation: Effect of GAC Size on Velocity Field Differences (GAC versus flocs) and Aggregation Behavior. Bioresour. Technol. 2015, 198, 358–363. [Google Scholar] [CrossRef]
- Tao, J.; Qin, L.; Liu, X.; Li, B.; Chen, J.; You, J.; Shen, Y.; Chen, H. Effect of Granular Activated Carbon on the Aerobic Granulation of Sludge and its Mechanism. Bioresour. Technol. 2017, 236, 60–67. [Google Scholar] [CrossRef]
- Liang, Z.; Tu, Q.; Su, X.; Yang, X.; Chen, J.; Chen, Y.; Li, H.; Liu, C.; He, Q. Formation, Extracellular Polymeric Substances, and Structural Stability of Aerobic Granules Enhanced by Granular Activated Carbon. Environ. Sci. Pollut. Res. 2019, 26, 6123–6132. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 Modified Biochar Derived from Aerobic Granular Sludge for Developed Microporosity and Enhanced Adsorption to Tetracycline. Biores. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef]
- Wei, D.; Xue, X.; Chen, S.; Zhang, Y.; Yan, L.; Wei, Q.; Du, B. Enhanced Aerobic Granulation and Nitrogen Removal by the Addition of Zeolite Powder in A Sequencing Batch Reactor. Appl. Microbiol. Biotechnol. 2013, 97, 9235–9243. [Google Scholar] [CrossRef]
- Thanh, B.X.; Visvanathan, C.; Spérandio, M.; Aim, R.B. Fouling Characterization in Aerobic Granulation Coupled Baffled Membrane Separation Unit. J. Membr. Sci. 2008, 318, 334–339. [Google Scholar] [CrossRef]
- Thanh, B.X.; Visvanathan, C.; Aim, R.B. Characterization of Aerobic Granular Sludge at Various Organic Loading Rates. Process Biochem. 2009, 44, 242–245. [Google Scholar] [CrossRef]
- He, Q.L.; Zhang, S.L.; Zou, Z.C.; Wang, H.Y. Enhanced Formation of Aerobic Granular Sludge with Yellow Earth as Nucleating Agent in a Sequencing Batch Reactor. IOP Conf. Ser. Earth Environ. Sci. 2016, 39, 1–10. [Google Scholar] [CrossRef]
- Arrojo, B. Advanced Systems for Biological Treatment of High Nitrogen—Loaded Wastewater. Ph.D. Thesis, University Santiago de Compostela, Santiago de Compostela, Spain, 2007; pp. 1–312. [Google Scholar]
- Beun, J.J.; van Loosdrecht, M.C.M.; Heijnen, J.J. Aerobic Granulation in A Sequencing Batch Airlift Reactor. Water Res. 2002, 36, 702–712. [Google Scholar] [CrossRef]
- Dezotti, M.; Lippel, G.; Bassin, J.P. Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques; Springer Nature: Rio de Janeiro, Brasil, 2011; pp. 1–298. [Google Scholar] [CrossRef]
- Caudan, C.; Filali, A.; Lefebvre, D.; Spérandio, M.; Girbal-Neuhauser, E. Extracellular Polymeric Substances (EPS) from Aerobic Granular Sludges: Extraction, Fractionation, and Anionic Properties. Appl. Biochem. Biotechnol. 2012, 166, 1685–1702. [Google Scholar] [CrossRef] [PubMed]
- Rusanowska, P.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I.; Korsak, E. Extracellular Polymers Content in Aerobic Granular Sludge. In Interdisciplinary Problems in Environmental Protection and Engineering; Wiśniewski, J., Kutyłowska, M., Trusz-Zdybek, A., Eds.; Publishing House of the Wroclaw University of Technology: Wrocław, Poland, 2015. [Google Scholar]
- Sheng, G.; Li, A.; Li, X.; Yu, H. Effects of Seed Sludge Properties and Selective Biomass Discharge on Aerobic Sludge Granulation. Chem. Eng. J. 2010, 160, 108–114. [Google Scholar] [CrossRef]
- Deng, S.; Wang, L.; Su, H. Role and Influence of Extracellular Polymeric Substances on the Preparation of Aerobic Granular Sludge. J. Environ. Manag. 2016, 173, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Campo, R.; Corsino, S.F.; Torregrossa, M.; Di Bella, G. The Role of Extracellular Polymeric Substances on Aerobic Granulation with Stepwise Increase of Salinity. Sep. Puryf. Technol. 2018, 195, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Mañas, A.; Biscans, B.; Spérandio, M. Biologically Induced Phosphorus Precipitation in Aerobic Granular Sludge Process. Water Res. 2011, 45, 3776–3786. [Google Scholar] [CrossRef] [Green Version]
- Cydzik-Kwiatkowska, A.; Rusanowska, P.; Głowacka, K. Operation Mode and External Carbon Dose as Determining Factors in Elemental Composition and Morphology of Aerobic Granules. Arch. Environ. Prot. 2016, 42, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Toh, S.; Tay, J.; Moy, B.; Ivanov, V.; Tay, S. Size-effect on the Physical Characteristics of the Aerobic Granule in a SBR. Appl. Biochem. Biotechnol. 2003, 60, 687–695. [Google Scholar] [CrossRef]
- Williams, T.M.; Unz, R.F. Filamentous Sulfur Bacteria of Activated Sludge: Characterization of Thiothrix, Beggiatoa, and Eikelboom Type 021N Strains. Appl. Environ. Microbiol. 1985, 49, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Fiałkowska, E.; Fyda, J.; Pajdak-Stós, A.; Więckowski, K. Activated Sludge. Biology and Microscopic Analysis, 2nd ed.; Seidel-Przywecki: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Bernat, K.; Zielińska, M.; Wojnowska-Baryła, I.; Łata, A. Changes in Dehydrogenase Activity of Activated Sludge in Sequencing Batch Reactor under Constant Aeration. Czas. Tech. 2007, 2, 3–11. [Google Scholar]
- Miksch, K. Physiological Activity of Microorganisms in the Activated Sludge Process. Sci. J. Sil. Univ. Technol. Ser. Environ. Eng. 1983, 24, 1–80. (In Polish) [Google Scholar]
- Jiang, H.-L.; Tay, J.-H.; Liu, Y.; Tiong-Lee Tay, S. Ca2+ Augmentation for Enhancement of Aerobically Grown Microbial Granules in Sludge Blanket Reactors. Biotechnol. Lett. 2003, 25, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.-T.; Liu, L.; Sheng, G.-P.; Liu, X.-W.; Yu, H.-Q.; Zhang, M.-C.; Zhu, J.-R. Calcium Spatial Distribution in Aerobic Granules and its Effects on Granule Structure, Strength and Bioactivity. Water Res. 2008, 42, 3343–3352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bishop, P.L.; Kinkle, B.K. Comparison of Extraction Methods for Quantifying Extracellular Polymers in Biofilms. Wat. Sci. Technol. 1999, 39, 211–218. [Google Scholar] [CrossRef]
- Kristensen, G.H.; Jørgensen, P.E.; Henze, M. Characterization of Functional Microorganism Groups and Substrate in Activated Sludge and Wastewater by AUR, NUR and OUR. Wat. Sci. Technol. 1992, 25, 43–57. [Google Scholar] [CrossRef]
- Zielińska, M.; Bernat, K.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I. Respirometric Activity of Activated Sludge in Sequencing Batch Reactor Depending on Substrate and Dissolved Oxygen Concentration. Environ. Prot. Eng. 2012, 38, 41–49. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds not are available from the authors. |
Parameter | Units | R1 | R2 | R3 | R4 |
---|---|---|---|---|---|
MLVSS | (g MLVSS/L) | 1.49 ± 0.36 | 4.12 ± 0.71 | 3.38 ± 1.93 | 3.94 ± 1.39 |
MLSS | (g MLSS/L) | 2.28 ± 0.41 | 5.24 ± 0.78 | 4.46 ± 2.14 | 5.07 ± 1.54 |
SVI5 | (mL/g) | 156.27 ± 88.9 | 51.07 ± 22.9 | 81.71 ± 54.1 | 43.47 ± 29.3 |
SVI30 | (mL/g) | 96.6 ± 38.2 | 39.8 ± 8.6 | 55.5 ± 27.4 | 32.8 ± 10.7 |
SVI5/SVI30 | (-) | 1.6 ± 0.3 | 1.3 ± 0.3 | 1.4 ± 0.4 | 1.3 ± 0.4 |
SV | (m/h) | 4.0 ± 0.4 | 15.4 ± 6.1 | 10.7 ± 2.9 | 13.1 ± 4.4 |
Parameter | Units | R1 | R2 | R3 | R4 |
---|---|---|---|---|---|
Average diameter | (µm) | 200.2 | 783.1 | 399.0 | 430.0 |
MLVSS | (g MLVSS/L) | 1.64 | 3.34 | 1.27 | 1.55 |
MLSS | (g MLSS/L) | 2.39 | 4.23 | 1.98 | 2.30 |
Density of granules | (g MLVSS/Lgranules) | 14.61 | 37.26 | 16.69 | 21.45 |
Number of granules* | (-) | 8∙107 | 1.1∙106 | 6.9∙106 | 5.2∙106 |
Specific surface area of the granules* | (m2/m3) | 3369** | 687 | 1145*** | 1010*** |
Reactor | Element | ||
---|---|---|---|
Calcium | Phosphorus | Magnesium | |
R1 | | | |
R2 | | | |
R3 | | | |
R4 | | | |
Parameter, Units | Powdered Granite (PG) | Powdered Ceramsite (PK) | Powdered Limestone (PL) |
---|---|---|---|
Sphericity | low sphericity | low sphericity | high sphericity |
Diameter: d10; d50; d90, µm | 3.194; 26.817; 100.470 | 3.643; 24.110; 85.279 | 1.865; 33.915; 189.720 |
Apparent density, g/cm3 | 2.6197 | 2.6182 | 2.1949 |
Specific surface area, m2/g | 1.792 | 5.183 | 1.760 |
Chemical composition, mg/g | Ca: 13.89; Mg: 1.46; Fe: 10.28; Si: 326.28 | Ca: 75.90; Mg: 21.61; Fe: 45.15; Si: 216.30 | Ca: 691.04; Mg: 4.61; Fe: 1.68; Si: 5.58 |
Substance leaching, µg/g | Ca: 50.34; Mg: 2.38; Fe: 1.25; Si: 50.98 | Ca: 451.65; Mg: 97.87; Fe: 0.50; Si: 23.01 | Ca: 87.75; Mg: 12.67; Fe: 0.21; Si: 7.00 |
Settling velocity, m/h | approx. 12.0 | approx. 9.0 | approx. 12.0 |
Parameter | Units | Component | Average | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
COD | mg O2/L | glucose | 717.1 | 62.6 | 615.0 | 785.0 |
TP | mg P/L | KH2PO4 | 9.73 | 1.05 | 8.55 | 11.6 |
TN | mg N/L | NH4Cl | 44.0 | 3.0 | 40.3 | 50.3 |
COD/TP ratio | - | - | 74.9 | 12.8 | 53.8 | 89.7 |
COD/TN ratio | - | - | 16.3 | 1.6 | 13.8 | 18.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnota, J.; Masłoń, A.; Zdeb, M.; Łagód, G. The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge. Molecules 2020, 25, 386. https://doi.org/10.3390/molecules25020386
Czarnota J, Masłoń A, Zdeb M, Łagód G. The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge. Molecules. 2020; 25(2):386. https://doi.org/10.3390/molecules25020386
Chicago/Turabian StyleCzarnota, Joanna, Adam Masłoń, Monika Zdeb, and Grzegorz Łagód. 2020. "The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge" Molecules 25, no. 2: 386. https://doi.org/10.3390/molecules25020386
APA StyleCzarnota, J., Masłoń, A., Zdeb, M., & Łagód, G. (2020). The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge. Molecules, 25(2), 386. https://doi.org/10.3390/molecules25020386