Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Characterization
2.1.1. HS-SPME-GC-MS Analysis
2.1.2. HS-SPME-GC×GC-TOF Analysis
2.2. Phenolic Characterization
3. Materials and Methods
3.1. Chemicals
3.2. Collection and Drying of Samples
3.3. Analysis of Phenolic Compounds
3.3.1. Folin-Ciocalteu Assay
3.3.2. HPLC-DAD Analysis of Flavonoids
3.4. Analysis of Volatile Organic Compounds
3.4.1. HS-SPME-GC-MS Analysis
3.4.2. HS-SPME-GC×GC-TOF Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitch, H.D.; Currah, L. Allium Crop Science: Recent Advances; Rabinowitch, H.D., Ed.; CABI: Stratford-upon-Avon, UK, 2002. [Google Scholar]
- USDA. U.S. Onion Statistics. 2011. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396 (accessed on 1 December 2018).
- Vazquez-Armenta, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; Molina-Corral, F.J.; Silva-Espinoza, B.A. Antibrowning and antimicrobial effects of onion essential oil to preserve the quality of cut potatoes. Acta Aliment. 2014, 43, 640–649. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.L.; Dai, D.H.; Hu, W.L. Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control. 2013, 30, 48–53. [Google Scholar] [CrossRef]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onion (Allium cepa) and garlic (Allium sativum). LWT Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Ponce, A.G.; Roura, S.I.; Del Valle, C.E.; Moreira, M.R. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biol. Technol. 2008, 49, 294–300. [Google Scholar] [CrossRef]
- Roldan-Marin, E.; Krath, B.N.; Poulsen, M.; Binderup, M.L.; Nielsen, T.H.; Hansen, M.; Barri, T.; Langkilde, S.; Pilar Cano, M.; Sanchez-Moreno, C.; et al. Effects of an onion by-product on bioactivity and safety markers in healthy rats. Br. J. Nutr. 2009, 102, 1574–1582. [Google Scholar] [CrossRef] [Green Version]
- Goren, A.; Goldman, W.F.; Trainin, Z.; Goldman, S.R. Antiviral Composition Derived from Allium Cepa and Therapeutic Use Thereof. Patent WO03059071, 24 July 2003. [Google Scholar]
- Coolong, T.W.; Randle, W.M.; Wicker, L. Structural and chemical differences in the cell wall regions in relation to scale firmness of three onion (Allium cepa L.) selection at harvest and during storage. J. Sci. Food Agric. 2008, 88, 1277–1286. [Google Scholar] [CrossRef]
- Avhenainen, R. New approaches in improving the shelf life on minimally processed fruit and vegetables. Trends Food Sci. Technol. 1996, 7, 179–187. [Google Scholar]
- Choi, S.M.; Lee, D.J.; Kim, J.Y.; Lim, S.T. Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chem. 2017, 231, 386–392. [Google Scholar] [CrossRef]
- Arslan, D.; Ozcan, M.M. Study the effect of sun, oven and microwavedrying on quality of onion slices. LWT Food Sci. Technol. 2010, 43, 1121–1127. [Google Scholar] [CrossRef]
- Colina-Coca, C.; Gonzalez-Pena, D.; Vega, E.; de Ancos, B.; Sanchez-Moreno, C. Novel approach for the determination of volatile compounds in processed onion by headspace gas chromatography–mass spectrometry (HS GC–MS). Talanta 2013, 103, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, H.; Ohmi, K.; Sakaue, K.; Tanaka, K. Inhibitory effect of onion oil on browning of shredded lattuce and its active components. J. Jpn. Soc. Hort. Sci. 2003, 72, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Starkenmann, C.; Niclass, Y.; Troccaz, M. Nonvolatile S-Alk(en)ylthio-L-cysteine Derivatives in Fresh Onion (Allium cepa L. cultivar). J. Agric. Food Chem. 2011, 59, 9457–9465. [Google Scholar] [CrossRef] [PubMed]
- Mondy, N.; Duplat, D.; Christides, J.P.; Arnault, I.; Auger, J. Aroma analysis of fresh and preserved onions and leak by dual solid-phase microextraction-liquid extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2002, 963, 89–93. [Google Scholar] [CrossRef]
- Price, K.R.; Rhodes, M.J.C. Analysis of the Major Flavonol Glycosides Present in Four Varieties of Onion (Allium cepa) and Changes in Composition Resulting from Autolysis. J. Sci. Food Agric. 1997, 74, 331. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Kebede, B.T.; Grauwet, T.; Mutsokoti, L.; Palmers, S.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Res. Int. 2014, 56, 218–225. [Google Scholar] [CrossRef]
- Yuan, J.P.; Chen, F. Degradation of ascorbic acid in aqueous solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Flaig, M.; Granvogl, M. Quantitation of cis- and trans-3,5-Diethyl-1,2,4-trithiolanes in Cooked Allium Varieties Using a Stable Isotope Dilution Assay. In Importance of Chirality to Flavor Compounds Engel and Takeoka; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Ren, F.; Perussello, C.A.; Kerry, J.P.; Zhang, Z.; Tiwari, B.K. Effect of agronomic practices and drying techniques on nutritional and quality parameters of onions (Allium cepa L.). Dry. Technol. 2018, 36, 435–447. [Google Scholar] [CrossRef]
- Soininen, T.H.; Jukarainen, N.; Auriola, S.O.K.; Julkunen-Tiitto, R.; Karjalainen, R.; Vepsäläinen, J.J. Quantitative metabolite profiling of edible onion species by NMR and HPLC–MS. Food Chem. 2014, 165, 499–505. [Google Scholar] [CrossRef]
- Perez-Gregorio, R.M.; Regueiro, J.; Gonzalez-Barreiro, C.; Rial-Otero, R.; Simal-Gàndara, J. Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control 2011, 22, 1108–1113. [Google Scholar] [CrossRef]
- Bonaccorsi, P.; Caristi, C.; Gargiulli, C.; Leuzzi, U. Flavonol glucoside profile of southern Italian red onion (Allium cepa L.). J. Agric. Food Chem. 2005, 53, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, M.J.C.; Price, K.R. Analytical problems in the study of flavonoid compounds in onions. Food Chemistry 1996, 57, 113–117. [Google Scholar] [CrossRef]
- Lombard, K.A.; Geoffriau, E.; Peffley, E. Flavonoid Quantification in Onion by Spectrophotometric and High Performance Liquid Chromatography Analysis. Hort. Sci. 2002, 37, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gregorio, R.M.; Garcia-Falcon, M.S.; Simal-Gàndara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Manohar, C.M.; Xue, J.; Murayyan, A.; Neethirajan, S.; Shi, J. Antioxidant activity of polyphenols from Ontario grown onion varieties using pressurized low polarity water technology. J. Funct. Foods 2017, 31, 52–62. [Google Scholar] [CrossRef]
- Roman, M.C.; Fabani, M.P.; Luna, L.C.; Feresin, G.E.; Mazza, G.; Rodriguez, R. Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Inf. Process. Agric. 2019, in press. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Adam, E.; Muhlbauer, A.; Esper, A.; Wolf, W.; Spiess, W. Quality changes of onion (Allium cepa L.) as affected by the drying process. Nahrung 2000, 44, 32–37. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of the Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Chemistry WebBook. Available online: http://www.nist.gov/index.html (accessed on 1 December 2018).
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | RIref | RIcal | Identification Ions | Dry Onion (µg g−1) | Dry Onion with Ascorbic Acid (µg g−1) | |||
---|---|---|---|---|---|---|---|---|
Flakes | Rings | Flakes | Rings | |||||
monosulfides | Σ | 0.32 | 0.09 | 0.25 | 0.09 | |||
dimethyl sulfide | 729 | 729 | 62, 47, 35 | 0.07 b | 0.03 a | 0.06 b | 0.03 a | |
allyl propyl sulfide | 1137 | 1113 | 116, 87, 73 | 0.20 b | 0.04 a | 0.16 b | 0.04 a | |
1-propenyl propyl sulfide | - | 1138 | 41, 116, 74 | 0.05 b | 0.02 a | 0.03 a | 0.02 a | |
disulfides | Σ | 76.76 | 32.89 | 75.04 | 41.74 | |||
dimethyl disulfide | 1105 | 1081 | 94, 79, 45 | 0.14 b | 0.03 a | 0.11 b | 0.02 a | |
methyl propyl disulfide | 1263 | 1244 | 80, 122, 43 | 2.56 b | 0.51 a | 2.34 b | 0.73 a | |
methyl cis-1-propenyl disulfide | 1298 | 1278 | 73, 120, 45 | 2.09 b | 0.20 a | 1.60 b | 0.42 a | |
methyl allyl disulfide | 1322 | 1293 | 41, 120, 45 | 0.05 b | 0.02 a | 0.05 b | 0.04 a,b | |
methyl trans-1-propenyl disulfide | 1322 | 1302 | 73, 120, 45 | 2.81 c | 0.29 a | 2.47 c | 0.80 b | |
isopropyl propyl disulfide | - | 1331 | 150, 43, 108 | 0.04 b | 0.01 a | 0.03 b | 0.01 a | |
dipropyl disulfide | 1413 | 1391 | 150, 43, 108 | 49.34 b | 28.53 a | 49.77 b | 33.35 a | |
propyl cis-1-propenyl disulfide | 1450 | 1427 | 148, 106, 41 | 6.69 b | 0.61 a | 6.05 b | 1.38 a | |
allyl isopropyl disulfide | - | 1443 | 57, 148, 106 | 0.46 c | 0.14 a | 0.47 c | 0.25 b | |
propyl trans-1-propenyl disulfide | 1473 | 1452 | 148, 106, 41 | 11.30 b | 1.53 a | 10.87 b | 3.34 a | |
allyl cis-1-propenyl disulfide | 1464 | 1480 | 146, 41, 105 | 0.05 b | 0.01 a | 0.04 b | 0.02 a | |
allyl trans-1-propenyl disulfide | 1533 | 1500 | 146, 41, 105 | 0.08 b | 0.03 a | 0.08 b | 0.04 a | |
1-(1-(methylthio)propyl)-2-propyl disulfide | - | 1876 | 89, 61, 73 | 0.15 ab | 0.07 a | 0.19 b | 0.18 b | |
methyl 1-(propylthio)propyl disulfide | - | 1985 | 117, 75, 41 | 0.44 a | 0.65 b | 0.48 a | 0.82 c | |
1-(cis-1-propenylthio)propyl propyl disulfide | - | 2075 | 115, 81, 73 | 0.19 b | 0.09 a | 0.20 b | 0.14 a,b | |
1-(trans-1-propenylthio)propyl propyl disulfide | - | 2080 | 115, 81, 73 | 0.37 b | 0.17 a | 0.29 a,b | 0.20 a | |
trisulfides | Σ | 41.08 | 5.30 | 41.69 | 11.21 | |||
dimethyl trisulfide | 1403 | 1399 | 126, 111, 79 | 6.01 c | 0.49 a | 7.16 c | 1.97 b | |
methyl propyl trisulfide | 1576 | 1553 | 154, 112, 43 | 6.56 c | 0.88 a | 6.45 c | 1.92 b | |
dipropyl trisulfide | 1713 | 1695 | 182, 43, 75 | 23.28 b | 3.32 a | 22.08 b | 5.37 a | |
allyl propyl trisulfide | 1797 | 1753 | 115, 180, 73 | 0.13 b | 0.04 a | 0.10 b | 0.03 a | |
propyl trans-1-propenyl trisulfide | 1770 | 1768 | 180, 74, 116 | 5.10 c | 0.57 a | 5.90 c | 1.92 b | |
other S-compounds | Σ | 6.08 | 2.45 | 9.09 | 4.83 | |||
carbon disulfide | 745 | 716 | 76, 44, 32 | 0.07 b | 0.02 a | 0.03 a | 0.02 a | |
1-propanethiol | 845 | 816 | 76, 47, 43 | 0.21 a | 0.14 a | 0.84 c | 0.46 b | |
2,4-dimethylthiophene | 1197 | 1199 | 112, 111, 97 | 0.42 b,c | 0.16 a | 0.46 c | 0.26 a,b | |
3,4-dimethylthiophene | 1253 | 1264 | 112, 111, 97 | 3.57 b | 1.16 a | 5.80 c | 2.55 b | |
cis-3,5-diethyl-1,2,4-trithiolane | 1775 | 1807 | 180, 74, 151 | 0.77 c | 0.35 a | 0.84 c | 0.63 b | |
trans-3,5-diethyl-1,2,4-trithiolane | 1795 | 1826 | 180, 74, 151 | 1.04 c | 0.62 a | 1.12 c | 0.91 b | |
aldehydes | Σ | 1.80 | 1.31 | 3.71 | 3.41 | |||
propanal | 784 | 764 | 58, 29, 28 | 0.20 b | 0.11 a | 0.23 b | 0.21 b | |
2-methyl propanal | 800 | 788 | 72, 43, 41 | 0.03 a | 0.03 a | 0.03 a | 0.03 a | |
2-methyl butanal | 916 | 917 | 41, 86, 57 | 0.09 a | 0.06 a | 0.07 a | 0.07 a | |
3-methyl butanal | 914 | 921 | 44, 71, 45 | 0.36 c | 0.31 b,c | 0.21 a | 0.23 a,b | |
pentanal | 978 | 985 | 44, 86, 58 | 0.02 a | 0.02 a | 0.06 b | 0.05 b | |
hexanal | 1084 | 1088 | 56, 72, 82 | 0.30 b | 0.23 a | 0.47 c | 0.31 b | |
2-methyl-2-butenal | 1104 | 1106 | 84, 55, 39 | 0.05 a | 0.03 a | 0.04 a | 0.04 a | |
2-methyl-2-pentenal | 1185 | 1170 | 98, 41, 69 | 0.20 c | 0.07 a | 0.14 b | n.d. | |
heptanal | 1186 | 1192 | 70, 86, 96 | 0.07 a | 0.06 a | 0.11 b | 0.13 b | |
octanal | 1296 | 1298 | 84, 100, 110 | 0.08 a | 0.06 a | 0.63 c | 0.35 b | |
(Z)-2-heptenal | 1339 | 1336 | 83, 112, 55 | 0.10 b,c | 0.06 a | 0.13 b,c | 0.08 a,b | |
nonanal | 1394 | 1402 | 98, 57, 114 | tr | tr | tr | tr | |
furfural | 1471 | 1470 | 96, 95, 39 | n.d. | 0.06 a | 1.00 b | 1.55 c | |
decanal | 1515 | 1507 | 112, 82, 95 | 0.16 a | 0.13 a | 0.49 c | 0.28 b | |
benzaldehyde | 1529 | 1542 | 106, 105, 77 | 0.14 c | 0.08 a | 0.10 b | 0.08 a | |
ketones | Σ | 0.04 | 0.03 | 0.03 | 0.03 | |||
6-methyl-5-hepten-2-one | 1338 | 1340 | 126, 69, 108 | 0.04 a | 0.03 a | 0.03 a | 0.03 a | |
carboxylic acids | Σ | 0.02 | 0.07 | 5.30 | 3.32 | |||
hexanoic acid | 1838 | 1846 | 87, 60, 73 | n.d. | n.d. | 0.62 a | 0.55 a | |
2-ethyl hexanoic acid | 1950 | 1951 | 88, 73, 116 | n.d. | n.d. | 3.26 b | 1.85 a | |
nonanoic acid | 2173 | 2167 | 73, 158, 129 | 0.02 a | 0.07 a | 1.42 c | 0.92 b | |
other compounds | Σ | 1.16 | 0.65 | 1.10 | 0.79 | |||
2-penthylfuran | 1236 | 1235 | 138, 81, 82 | 0.05 a,b | 0.02 a | 0.07 b | 0.05 a,b | |
1-octen-3-ol | 1451 | 1444 | 57, 72, 99 | 0.27 b | 0.20 a | 0.22 a | 0.32 a | |
isopropyl dodecanoate | 1832 | 1835 | 200, 102, 183 | 0.27 b | 0.17 a | 0.29 b | 0.19 a | |
2,2,4-trimethyl-1,3-pentanediol diisobutyrate | - | 1885 | 71, 83, 111 | 0.57 b | 0.26 a | 0.52 b | 0.23 a | |
Total VOCs content | 127.26 | 42.79 | 136.21 | 65.42 |
1-Propenyl | Allyl | |
---|---|---|
(µg g−1) | (µg g−1) | |
Flakes | 28.73 | 0.97 |
Rings | 3.52 | 0.28 |
Compound | 1st D RT (min) | 2nd D RT (s) | Rings (volume) | Flakes (volume) | Rings (%) | Flakes (%) |
---|---|---|---|---|---|---|
propyl mercaptan | 6.05 | 0.42 | 1,724,317 | 2,979,593 | 5.0 | 5.8 |
allylthiol | 6.20 | 0.62 | 816,521 | n.d. | 2.4 | n.d. |
2-methyl-2-butenal | 8.65 | 1.04 | 677,649 | n.d. | 2.0 | n.d. |
2,4-dimethylthiophene | 12.85 | 1.06 | 562,705 | 787,731 | 1.6 | 1.5 |
3,4-dimethylthiophene | 13.80 | 1.24 | 1,170,022 | 6,773,463 | 3.4 | 13.2 |
methyl propyl disulfide | 14.80 | 1.04 | 416,658 | 2,247,811 | 1.2 | 4.4 |
methyl 1-propenyl disulfide | 15.15 | 1.28 | 149,034 | 1,541,084 | 0.4 | 3.0 |
dimethyl trisulfide | 16.40 | 1.72 | 133,334 | 1,679,770 | 0.4 | 3.3 |
dipropyl dilsulide | 21.60 | 0.94 | 11,529,581 | 14,500,819 | 33.4 | 28.3 |
propenyl propyl disulfide | 21.95 | 1.10 | 1,365,546 | 3,030,564 | 4.0 | 5.9 |
diethanol disulfide | 23.40 | 1.38 | 740,611 | 3,813,741 | 2.1 | 7.4 |
unidentified sulfide mw 152 | 23.95 | 1.68 | 254,301 | 2,194,284 | 0.7 | 4.3 |
decanal | 25.15 | 0.92 | 145,059 | 1,481,756 | 0.4 | 2.9 |
dipropyl trisulfide | 29.50 | 1.08 | 8,135,894 | 5,312,160 | 23.6 | 10.4 |
trans-3,5-diethyl-1,2,4-trithiolane | 29.90 | 1.62 | 1,341,744 | 220,925 | 3.9 | 0.4 |
cis-3,5-diethyl-1,2,4-trithiolane | 30.15 | 1.64 | 2,565,177 | 912,354 | 7.4 | 1.8 |
propenyl propyl trisulfide | 30.15 | 1.38 | 1,970,506 | 3,730,800 | 5.7 | 7.3 |
4,6-Diethyl-1,2,3,5-tetrathiolane | 38.40 | 2.22 | 809,467 | n.d. | 2.3 | n.d. |
RT (min) | UV Absorption (nm) | Onion Flakes | Onion Rings | |
---|---|---|---|---|
(mg g−1) | (mg g−1) | |||
flavonoid | ||||
Quercetin-7,4′-diglucoside | 22.3 | 252–366 | 0.05 | 0.04 |
Quercetin-3,4′-diglucoside | 25.2 | 265–344 | 1.76 | 0.94 |
Isorhamnetin-3,4′-diglucoside | 27.3 | 266–344 | 0.11 | 0.01 |
Quercetin-3-glucoside | 33.7 | 256–350 | 0.05 | 0.02 |
Quercetin-4′-glucoside | 36.9 | 253–365 | 1.52 | 0.87 |
Isorhamnetina-4′-glucoside | 38.0 | 252–366 | 0.03 | 0.13 |
Quercetin | 42.9 | 255–370 | 0.04 | 0.04 |
Total flavonoid content | 3.56 b | 2.04 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchi, L.; Ieri, F.; Vignolini, P.; Mulinacci, N.; Romani, A. Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules 2020, 25, 408. https://doi.org/10.3390/molecules25020408
Cecchi L, Ieri F, Vignolini P, Mulinacci N, Romani A. Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules. 2020; 25(2):408. https://doi.org/10.3390/molecules25020408
Chicago/Turabian StyleCecchi, Lorenzo, Francesca Ieri, Pamela Vignolini, Nadia Mulinacci, and Annalisa Romani. 2020. "Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD" Molecules 25, no. 2: 408. https://doi.org/10.3390/molecules25020408
APA StyleCecchi, L., Ieri, F., Vignolini, P., Mulinacci, N., & Romani, A. (2020). Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules, 25(2), 408. https://doi.org/10.3390/molecules25020408