Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of AuNPs Substrates
2.2. Experimental and Theoretical Raman Spectra of Flumetsulam
2.3. The Influence of AuNPs Size and Concentration on SERS Detection of Flumetsulam
2.4. The Influence of Halide and Sulfate on SERS Detection of Flumetsulam
2.5. Quantitative Analysis of Flumetsulam
2.6. Detection of Flumetsulam Residue in Real Wheat Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Apparatus
3.3. Preparation of AuNPs with Different Sizes
3.4. Preparation of Halide-Modified AuNPs Substrates
3.5. Pretreatment of Wheat Samples
3.6. SERS Measurement
3.7. DFT Calculation
3.8. Spectral Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baskaran, S.; Lauren, D.R.; Holland, P.T. High-performance liquid chromatographic determination of flumetsulam, a newly developed sulfonamide herbicide in soil. J. Chromatogr. A 1996, 746, 25–30. [Google Scholar] [CrossRef]
- Xu, H.; Pan, W.; Song, D.; Yang, G. Development of an improved liquid phase, microextraction technique and its application in the analysis of flumetsulam and its two analogous herbicides in soil. J. Agric. Food Chem. 2007, 55, 9351–9356. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, M.A.; Hernandez-Borges, J. Rapid analysis of triazollopyrimidine sullfoanillide herbicides in waters and soils by high-performance liquid chromatography with UV detection using a C-18 monolithic column. J. Sep. Sci. 2007, 30, 8–14. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, J.; Yang, T. Dissipation and Residues of Flumetsulam in Wheat and Soil. Bull. Environ. Contam. Toxicol. 2012, 88, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Dong, F.; Liu, X.; Zhub, G.; Zheng, Y. A multiresidue analytical method for the detection of seven triazolopyrimidine sulfonamide herbicides in cereals, soybean and soil using the modified QuEChERS method and UHPLC-MS/MS. Anal. Methods 2015, 7, 9791–9799. [Google Scholar] [CrossRef]
- Garrido Medina, R.; Lopez Malo, D.; Martinez Calatayud, J. Automated photo-induced fluorescence determination of flumetsulam. Anal. Lett. 2009, 42, 958–972. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, T.; Hu, J. Dissipation kinetics and residues of triazolopyrimidine herbicides flumetsulam and florasulam in corn ecosystem. Environ. Monit. Assess. 2015, 187, 390. [Google Scholar] [CrossRef] [PubMed]
- El Maataoui, Y.; El M’Rabet, M.; Maaroufi, A.; Oudda, H.; Dahchour, A. Adsorption isotherm modeling of carbendazim and flumetsulam onto homoionic-montmorillonite clays: Comparison of linear and nonlinear models. Turk. J. Chem. 2017, 41, 514–524. [Google Scholar] [CrossRef]
- Wang, P.; Tian, F.; Xu, J.; Dong, F.; Li, S.; Zheng, Y.; Liu, X. Determination of flumetsulam residues in 20 kinds of plant-derived foods by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Methods 2015, 7, 5772–5779. [Google Scholar] [CrossRef]
- Palma, G.; Jorquera, M.; Demanet, R.; Elgueta, S.; Briceno, G.; Mora, M.L. Urea fertilizer and pH Influence on sorption process of flumetsulam and MCPA acidic herbicides in a volcanic soil. J. Environ. Qual. 2016, 45, 323–330. [Google Scholar] [CrossRef]
- Song, S.; Huang, H.; Chen, Z.; Wei, J.; Deng, C.; Tan, H.; Li, X. Representative Commodity for Six Leafy Vegetables Based on the Determination of Six Pesticide Residues by Gas Chromatography. Acta Chromatogr. 2019, 31, 49–56. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S.; Gill, J.P.S.; Kumar, A. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Anal. Methods 2019, 12, 338–346. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Wang, J.; Liu, W.; Hao, L.; Zhou, J.; Wang, Z.; Wu, Q. Sensitive determination of phenylurea herbicides in soybean milk and tomato samples by a novel hypercrosslinked polymer based solid-phase extraction coupled with high performance liquid chromatography. Food Chem. 2020, 317, 126410. [Google Scholar] [CrossRef]
- Rutkowska, E.; Lozowicka, B.; Kaczynski, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Hamadamin, A.Y.; Hassan, K.I. Gas chromatography-mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Saudi J. Biol. Sci. 2020, 27, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Kim, B.; Kim, J.; Baek, S.Y. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using (13)C-labeled internal standards. Food Chem. 2020, 309, 125639. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef]
- Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid—Phase extraction and liquid chromatography—Tandem mass spectrometry. Food Chem. 2019, 270, 204–213. [Google Scholar] [CrossRef]
- Valera-Tarifa, N.M.; Santiago-Valverde, R.; Hernandez-Torres, E.; Martinez-Vidal, J.L.; Garrido-Frenich, A. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS. Food Chem. 2020, 315, 126304. [Google Scholar] [CrossRef]
- Alsammarraie, F.K.; Lin, M.; Mustapha, A.; Lin, H.; Chen, X.; Chen, Y.; Wang, H.; Huang, M. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem. 2018, 259, 219–225. [Google Scholar] [CrossRef]
- Weng, S.; Yu, S.; Dong, R.; Zhao, J.; Liang, D. Detection of pirimiphos-methyl in wheat using surface-enhanced raman spectroscopy and chemometric methods. Molecules 2019, 24, 1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Feng, S.; Hu, Y.; Wang, S.; Lu, X. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chem. 2019, 276, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Bernatova, S.; Donato, M.G.; Jezek, J.; Pilat, Z.; Samek, O.; Magazzu, A.; Marago, O.M.; Zemanek, P.; Gucciardi, P.G. Wavelength-dependent optical force aggregation of gold nanorods for SERS in a microfluidic chip. J. Phys. Chem. C 2019, 123, 5608–5615. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Z.; Liu, M.; Qiu, C.; Yang, H.; Chen, X. In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Talanta 2017, 165, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Han, Y.; Zhu, L.; Chen, W.; Zhou, Y.; Chen, J.; Jiang, Z.; Cao, X.; Dou, Z. Quantitative Detection of Isofenphos-Methyl in Corns Using Surface-Enhanced Raman Spectroscopy (SERS) with chemometric methods. Food Anal. Meth. 2017, 10, 1202–1208. [Google Scholar] [CrossRef]
- Pilat, Z.; Bernatova, S.; Jezek, J.; Kirchhoff, J.; Tannert, A.; Neugebauer, U.; Samek, O.; Zemanek, P. Microfluidic cultivation and laser tweezers Raman spectroscopy of e-coli under antibiotic stress. Sensors 2018, 18, 1623. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lin, M.; Sun, L.; Xu, T.; Lai, K.; Huang, M.; Lin, H. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem. 2019, 293, 271–277. [Google Scholar] [CrossRef]
- Glaspell, G.P.; Zuo, C.; Jagodzinski, P.W. Surface enhanced Raman spectroscopy using silver nanoparticles: The effects of particle size and halide ions on aggregation. J. Cluster Sci. 2005, 16, 39–51. [Google Scholar] [CrossRef]
- Tong, L.; Zhu, T.; Liu, Z. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304. [Google Scholar] [CrossRef]
- Liu, F.; Gu, H.; Lin, Y.; Qi, Y.; Dong, X.; Gao, J.; Cai, T. Surface-enhanced Raman scattering study of riboflavin on borohydride-reduced silver colloids: Dependence of concentration, halide anions and pH values. Spectroc. Acta Part A 2012, 85, 111–119. [Google Scholar] [CrossRef]
- Zhang, C.; Lia, C.; Yu, J.; Jiang, S.; Xu, S.; Yang, C.; Liu, Y.J.; Gao, X.; Liu, A.; Man, B. SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sens. Actuators B 2018, 258, 163–171. [Google Scholar] [CrossRef]
- Luis Castro, J.; Rosa Lopez-Ramirez, M.; Francisco Arenas, J.; Carlos Otero, J. Surface-enhanced Raman scattering of benzene sulfonamide and sulfanilamide adsorbed on silver nanoparticles. J. Raman Spectrosc. 2012, 43, 857–862. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Z.; Zhu, H.; Hasi, W. Characterization of a Chloride-Activated Surface Complex and Corresponding Enhancement Mechanism by SERS Saturation Effect. J. Phys. Chem. C 2017, 121, 950–957. [Google Scholar] [CrossRef]
- Qu, W.; Lu, L.; Lin, L.; Xu, A. A silver nanoparticle-based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde. Nanoscale 2012, 4, 7358–7361. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Q.; Li, H.; Mustapha, A.; Lin, M. Standing Gold Nanorod Arrays as Reproducible SERS Substrates for Measurement of Pesticides in Apple Juice and Vegetables. J. Food Sci. 2015, 80, 450–458. [Google Scholar] [CrossRef]
- Chen, M.; Luo, W.; Zhang, Z.; Zhu, F.; Liao, S.; Yang, H.; Chen, X. Sensitive surface enhanced Raman spectroscopy (SERS) detection of methotrexate by core-shell-satellite magnetic microspheres. Talanta 2017, 171, 152–158. [Google Scholar] [CrossRef]
- Yan, R.; Wang, Z.; Zhou, J.; Gao, R.; Liao, S.; Yang, H.; Wang, F. Gold nanoparticle enriched by Q sepharose spheres for chemical reaction tandem SERS detection of malondialdehyde. Sens. Actuators B 2019, 281, 123–130. [Google Scholar] [CrossRef]
- Lin, B.; Kannan, P.; Qiu, B.; Lin, Z.; Guo, L. On-spot surface enhanced Raman scattering detection of Aflatoxin B1 in peanut extracts using gold nano bipyramids evenly trapped into the AAO nanoholes. Food Chem. 2020, 307, 125528. [Google Scholar] [CrossRef]
- Chen, M.; Luo, W.; Liu, Q.; Hao, N.; Zhu, Y.; Liu, M.; Wang, L.; Yang, H.; Chen, X. Simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate for reliable detection of thiram residue. Anal. Chem. 2018, 90, 13647–13654. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Khanadeev, V.A.; Panfilova, E.V.; Bratashov, D.N.; Khlebtsov, N.G. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. ACS Appl. Mater. Interfaces 2015, 7, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, S.Z.; Huo, Y.Y.; Ning, T.Y.; Liu, A.H.; Zhang, C.; He, Y.; Wang, M.H.; Li, C.H.; Man, B.Y. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Gu, H.; Kang, J.; Yuan, X.; Wu, J. Effects of the surface modification of silver nanoparticles on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid. J. Mol. Struct. 2010, 984, 396–401. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, W.; Chen, C. Two-step centrifugation method for subpicomolar surface-enhanced raman scattering detection. Anal. Chem. 2016, 88, 5009–5015. [Google Scholar] [CrossRef]
- Dong, X.; Gu, H.; Liu, F. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity. Spectroc. Acta Part A 2012, 88, 97–101. [Google Scholar] [CrossRef]
- Leopold, N.; Stefancu, A.; Herman, K.; Todor, I.S.; Iancu, S.D.; Moisoiu, V.; Leopold, L.F. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement. Beilstein J. Nanotechnol. 2018, 9, 2236–2247. [Google Scholar] [CrossRef]
- Otto, A.; Bruckbauer, A.; Chen, Y.X. On the chloride activation in SERS and single molecule SERS. J. Mol. Struct. 2003, 661, 501–514. [Google Scholar] [CrossRef]
- Futamata, M.; Maruyama, Y. Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering. Anal. Bioanal. Chem. 2007, 388, 89–102. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Shen, Y.; Yang, M.; Li, X.; Han, X.; Jiang, X.; Zhao, B. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta 2018, 179, 37–42. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Du, J.; Yang, M.; Shen, Y.; Li, X.; Han, X.; Yang, L.; Zhao, B. SERS investigation and high sensitive detection of carbenicillin disodium drug on the Ag substrate. Spectroc. Acta Part A 2018, 204, 241–247. [Google Scholar] [CrossRef]
- Han, S.; Hong, S.; Li, X. Effects of cations and anions as aggregating agents on SERS detection of cotinine (COT) and trans-3 ‘-hydroxycotinine (3HC). J. Colloid Interface Sci. 2013, 410, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, C.J.; Karim, M.R.; Kim, M.S.; Lee, M.S. Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface. Spectroc. Acta Part A 2011, 78, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Bastus, N.G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Ahuja, B.; Sharma, B. Density-functional thermochemistry. III. The role of exact exchange. Indian J. Pure Appl. Phys. 2004, 42, 43–48. [Google Scholar]
- Han, C.; Yao, Y.; Wang, W.; Qu, L.; Bradley, L.; Sun, S.; Zhao, Y. Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sens. Actuators B 2017, 251, 272–279. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Liang, Y. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Samples | Flumetsulam Content (μg/g) | Recovery (%) | RSD (%) | |
---|---|---|---|---|
Spiked | Measured | |||
Wheat | 5 | 4.4137 | 88.3 | 8.9 |
0.5 | 0.4782 | 95.6 | 5.6 | |
0.05 | 0.0445 | 89.0 | 7.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Lu, H.; Zhang, Z. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. Molecules 2020, 25, 4662. https://doi.org/10.3390/molecules25204662
Han M, Lu H, Zhang Z. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. Molecules. 2020; 25(20):4662. https://doi.org/10.3390/molecules25204662
Chicago/Turabian StyleHan, Mingming, Hongmei Lu, and Zhimin Zhang. 2020. "Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat" Molecules 25, no. 20: 4662. https://doi.org/10.3390/molecules25204662
APA StyleHan, M., Lu, H., & Zhang, Z. (2020). Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. Molecules, 25(20), 4662. https://doi.org/10.3390/molecules25204662