A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses
Abstract
:1. Introduction
- the most sensitive and ubiquitous NMR nucleus (H) remains challenging. Because water is the solvent, efficient solvent suppression techniques must be used, since deuterated solvents at high concentrations often interfere with the biology and can be costly [21]. In situ samples are heterogeneous and magnetic susceptibility differences at interfaces prohibit the measurement of high-resolution spectra. This is circumvented by avoiding H and instead, measuring nuclei with larger chemical shift dispersion (e.g., C and P), at the cost of decreased sensitivity (unless hyperpolarization is implemented [14]) and metabolite coverage [22];
- intra- and extra-cellular compartments are simultaneously measured when cultures are loaded into the NMR detector. Situations in which it is important to distinguish signals that arise separately from the two compartments require additional considerations [23];
- absolute quantification requires the addition of a concentration standard. This can be added directly to the perfusion medium, thus potentially interfering with the sample [21] and adding to the cost, or inserted into the sample container in a sealed capillary, further decreasing the spectral resolution.
- High-field compatibility: the flow cell uses a standard 5 mm NMR sample tube as the outer sample container, making it compatible with standard high magnetic field NMR probes.
- High-resolution H NMR: The flow cell permits the use of a DO solution containing an internal standard, thus standard field locking is possible. Although the effective filling factor of the sample solution is reduced in this design, solvent suppression is less complicated, and radiation damping effects can be reduced. The geometry of the flow cell is such that high static magnetic field homogeneity is maintained in the sample region, with minor corrections resolved using the NMR shim system.
- Improved measurement time / sample: because only the liquid sample is transported while the sample container remains within the magnetic field, a system re-calibration (tuning/matching, shimming) for each sample is not required.
- Less user input required: once the platform has been set up and the first NMR experiment is started, there is very little user intervention required.
2. Materials and Methods
2.1. Equipment and Chemicals
2.2. Sample Insert Design
2.3. Personal Reaction Station
2.4. Sample Transport
2.5. Sample Preparation
2.6. Experimental Setup
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wishart, D.S. Quantitative metabolomics using NMR. TrAC Trends Anal. Chem. 2008, 27, 228–237. [Google Scholar] [CrossRef]
- Alshamleh, I.; Krause, N.; Richter, C.; Kurrle, N.; Serve, H.; Günther, U.L.; Schwalbe, H. Real-Time NMR Spectroscopy for Studying Metabolism. Angew. Chem. Int. 2020, 59, 2304–2308. [Google Scholar] [CrossRef] [PubMed]
- Abu-Absi, N.R.; Martel, R.P.; Lanza, A.M.; Clements, S.J.; Borys, M.C.; Li, Z.J. Application of spectroscopic methods for monitoring of bioprocesses and the implications for the manufacture of biologics. Pharm. Bioprocess 2014, 2, 267–284. [Google Scholar] [CrossRef]
- Gillies, R.; Galons, J.; KA, M.; Scherer, P.; Lien, Y.; Job, C.; Ratcliff, R.; Chapa, F.; Cerdan, S.; Dale, B. Design and application of NMR-compatible bioreactor circuits for extended perfusion of high-density mammalian cell cultures. NMR Biomed. 1993, 6, 95. [Google Scholar] [CrossRef]
- Gillies, R.; Liu, Z.; Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. 1994, 267, C195–C203. [Google Scholar] [CrossRef]
- Gamcsik, M.P.; Millis, K.K.; Colvin, M.O. Noninvasive Detection of Elevated Glutathione Levels in MCF-7 Cells Resistant to 4-Hydroperoxycyclophosphamide. Cancer Res. 1995, 55, 2012–2016. [Google Scholar]
- Finch, G.; Yilmaz, A.; Utz, M. An optimised detector for in-situ high-resolution NMR in microfluidic devices. J. Magn. Reson. 2016, 262, 73. [Google Scholar] [CrossRef] [Green Version]
- Cerofolini, L.; Giuntini, S.; Barbieri, L.; Pennestri, M.; Codina, A.; Fragai, M.; Banci, L.; Luchinat, E.; Ravera, E. Real-time insights into biological events: In-cell processes and protein-ligand interactions. Biophys. J. 2018, 116, 239–247. [Google Scholar] [CrossRef]
- Carvalho, J.; Alves, S.; Castro, M.M.; Geraldes, C.; Queiroz, J.A.; Fonsec, C.P.; Cruz, C. Development of a bioreactor system for cytotoxic evaluation of pharmacological compounds in living cells using NMR spectroscopy. J. Pharmacol. Toxicol. 2019, 95, 70–78. [Google Scholar] [CrossRef]
- Farghali, H.; Caraceni, P.; Rilo, H.; Borle, A.; Gasbarrini, A.; Gavaler, J.; Thiel, V.D. Biochemical and 31P-NMR spectroscopic evaluation of immobilized perfused rat Sertoli cells. J. Lab. Clin. Med. 1996, 128, 408. [Google Scholar] [CrossRef]
- Hartbrich, A.; Schmitz, G.; Weuster-Botz, D.; de Graaf, A.; Wandrey, C. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. Biotechnol. Bioeng. 1996, 51, 624–635. [Google Scholar] [CrossRef]
- Mancuso, A.; Beardsley, N.; Wehrli, S.; Pickup, S.; Matschinsky, F.; Glickson, J. Real-time detection of13C NMR labeling kinetics in perfused EMT6 mouse mammary tumor cells and βHC9 mouse insulinomas. Biotechnol. Bioeng. 2004, 87, 835. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 19345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshari, K.R.; Kurhanewicz, J.; Jeffries, R.E.; Wilson, D.M.; Dewar, B.J.; Criekinge, M.; Zierhut, M.; Vigneron, D.B.; Macdonald, J.M. Hyperpolarized 13 C spectroscopy and an NMR-compatible bioreactor system for the investigation of real-time cellular metabolism. Magn. Reson. Med. 2010, 63, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaf, N.G.; Barnes, C.O.; Charlton, L.M.; Young, G.B.; Pielak, G.J. A bioreactor for in-cell protein NMR. J. Magn. Reson. 2010, 202, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Isern, N.G.; Ewing, J.R.; Liyu, A.V.; Sears, J.A.; Knapp, H.; Iversen, J.; Sisk, D.R.; Ahring, B.K.; Majors, P.D. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles. Appl. Microbiol. Biotechnol. 2014, 98, 8367–8375. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; An, Y.; Xu, W.; Kang, K.; Park, S. Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy. Angew. Chem. Int. 2015, 54, 5374–5377. [Google Scholar] [CrossRef] [PubMed]
- Majors, P.D.; McLean, J.S.; Scholten, J.C. NMR bioreactor development for live in-situ microbial functional analysis. J. Magn. Reson. 2008, 192, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Soong, R.; Nagato, E.; Sutrisno, A.; Blythe, F.; Akhter, M.; Schmidt, S.; Heumann, H.; Simpson, A.J. In Vivo NMR spectroscopy: Toward real time monitoring of environmental stress. Magn. Reson. Chem. 2015, 53, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nishida, N.; Udagawa, Y.; Takarada, O.; Ogino, S.; Shimada, I. A Gel-Encapsulated Bioreactor System for NMR Studies of Protein–Protein Interactions in Living Mammalian Cells. Angew. Chem. Int. 2013, 52, 1208–1211. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Mun, C. Cytotoxicity of TSP in 3D Agarose Gel Cultured Cell. PLoS ONE 2015, 10, e0128739. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Wilson, I.D. High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. Nucl. Magn. Reson. Spectrosc. 1989, 21, 449–501. [Google Scholar] [CrossRef]
- Aime, S.; Botta, M.; Fasano, M.; Terreno, E. Lanthanide (III) chelates for NMR biomedical applications. Chem. Soc. Rev. 1998, 27, 19–29. [Google Scholar] [CrossRef]
- Bernstein, M.A.; Štefinović, M.; Sleigh, C.J. Optimising reaction performance in the pharmaceutical industry by monitoring with NMR. Magn. Reson. Chem. 2007, 45, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, M.; Bernstein, M.; Morris, G. A simple flowcell for reaction monitoring by NMR. Magn. Reson. Chem. 2010, 48, 516–522. [Google Scholar] [CrossRef]
- Brächer, A.; Hoch, S.; Albert, K.; Kost, H.; Werner, B.; von Harbou, E.; Hasse, H. Thermostatted micro-reactor NMR probe head for monitoring fast reactions. J. Magn. Reson. 2014, 242, 155–161. [Google Scholar] [CrossRef]
- Brächer, A.; Behrens, R.; von Harbou, E.; Hasse, H. Application of a new micro-reactor 1H NMR probe head for quantitative analysis of fast esterification reactions. Chem. Eng. J. 2016, 306, 413. [Google Scholar] [CrossRef]
- Yilmaz, A.; Utz, M. Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy. Lab. Chip. 2016, 16, 2079. [Google Scholar] [CrossRef] [Green Version]
- Gómez, V.M.; de la Hoz, A. NMR reaction monitoring in flow synthesis. Beilstein J. Org. Chem. 2017, 13, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Carret, G.; Berthelot, T.; Berthault, P. Inductive Coupling and Flow for Increased NMR Sensitivity. Anal. Chem. 2018, 90, 11169–11173. [Google Scholar] [CrossRef] [Green Version]
- Sans, V.; Porwol, L.; Dragone, V.; Cronin, L. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem. Sci. 2015, 6, 1258–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Danieli, E.; Blümich, B. Desktop NMR spectroscopy for real-time monitoring of an acetalization reaction in comparison with gas chromatography and NMR at 9.4 T. Anal. Bioanal. Chem. 2017, 409, 7223–7234. [Google Scholar] [CrossRef] [PubMed]
- Kreyenschulte, D.; Paciok, E.; Regestein, L.; Blümich, B.; Büchs, J. Online monitoring of fermentation processes via non-invasive low-field NMR. Biotechnol. Bioeng. 2015, 112, 1810–1821. [Google Scholar] [CrossRef]
- Bouillaud, D.; Drouin, D.; Charrier, B.; Jacquemmoz, C.; Farjon, J.; Giraudeau, P.; Gonçalves, O. Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process. Biochem. 2020, 93, 63–68. [Google Scholar] [CrossRef]
- Schülein, M. Cellulases of Trichoderma reesei. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 160, pp. 234–242. [Google Scholar]
- Bischof, R.H.; Ramoni, J.; Seiboth, B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 2016, 15, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejeune, R.; Baron, G. Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Appl. Microbiol. Biotechnol. 1995, 43, 249–258. [Google Scholar] [CrossRef]
- Geysens, S.; Pakula, T.; Uusitalo, J.; Dewerte, I.; Penttilä, M.; Contreras, R. Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: A frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl. Environ. Microbiol. 2005, 71, 2910–2924. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Murali, N. Radiation damping in modern NMR experiments: Progress and challenges. Prog. Nucl. Mag. Res. Sp. 2013, 68, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Ng, I.; Wu, X.; Lu, Y.; Yao, C. Trichoderma reesei Cellulase Complex in Hydrolysis of Agricultural Waste of Grapefruit Peel and Orange Peel. Bioresources 2014, 9, 6420–6431. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Luengo, A.; Gui, D.Y.; Heiden, M.G. Targeting Metabolism for Cancer Therapy. Cell Chem. Biol. 2017, 24, 1161–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Jang, W.; Yang, D.; Cho, J.; Park, D.; Lee, S. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019, 37, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Singh, A.; Himmel, M.E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 2009, 20, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Jouda, M.; Fuhrer, E.; Silva, P.; Korvink, J.G.; MacKinnon, N. Automatic Adaptive Gain for Magnetic Resonance Sensitivity Enhancement. Anal. Chem. 2019, 91, 2376–2383. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Measured (ppm) | Multiplicity | Database (ppm) |
---|---|---|---|
Alanine (b) | 1.50 | d | 1.50 |
Acetate (a) | 2.09 | s | 2.04 |
Ethanol (c) | 1.20 | t | 1.17 |
Ethanol (c) | 3.68 | q | 3.65 |
Glycine (d) | 3.38 | s | 3.54 |
Saccharide (f) | 3.9 | m | - |
Lactate (e) | 1.39 | d | 1.32 |
Lactate (e) | 4.27 | q | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehendale, N.; Jenne, F.; Joshi, C.; Sharma, S.; Masakapalli, S.K.; MacKinnon, N. A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules 2020, 25, 4675. https://doi.org/10.3390/molecules25204675
Mehendale N, Jenne F, Joshi C, Sharma S, Masakapalli SK, MacKinnon N. A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules. 2020; 25(20):4675. https://doi.org/10.3390/molecules25204675
Chicago/Turabian StyleMehendale, Ninad, Felix Jenne, Chandrakant Joshi, Swati Sharma, Shyam Kumar Masakapalli, and Neil MacKinnon. 2020. "A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses" Molecules 25, no. 20: 4675. https://doi.org/10.3390/molecules25204675
APA StyleMehendale, N., Jenne, F., Joshi, C., Sharma, S., Masakapalli, S. K., & MacKinnon, N. (2020). A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules, 25(20), 4675. https://doi.org/10.3390/molecules25204675