The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients
Abstract
:1. Introduction
2. Methodology
3. Structural Properties of Tannins
4. Mode of Action and Functions of Tannins
5. Antibiotic Resistance in Animal Byproducts
6. Medicinal Uses of Tannins
7. Tannins as Adhesives
8. Nutritive and Antinutritive Effects of Tannins
9. Influence of Tannins on the Productivity of Monogastric Animals
10. Processing Techniques Used to Reduce Effects of Tannins
10.1. Enzyme Supplementation
10.2. Soaking
10.3. Dehulling
10.4. Extrusion
10.5. Germination
10.6. Cooking
10.7. Auticlaving
10.8. Grinding
11. Health Benefits of Tannins in Monogastric Animal Production
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Redondo, L.M.; Chacana, P.A.; Dominguez, J.E.; Fernandez, M.E. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol. 2014, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Butler, L.G. Antinutritional effects of condensed and hydrolyzable tannins. Basic Life Sci. 1992, 59, 693–698. [Google Scholar]
- Brus, M.; Dolin, J.; CenCi, C.A.; Skorjanc, D. Effect of chestnut (Castanea sativa) wood tannins and organic acids on growth performance and faecal microbiota of pigs from 23 to 127 days of age. Bulg. J Agric. Sci. 2013, 19, 841–847. [Google Scholar]
- Biagia, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch. Anim. Nutr. 2010, 64, 121. [Google Scholar] [CrossRef]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef]
- Maunder, B. Sorghum—The Global Grain of the Future. Available online: http://www.sorghumgrowers.com/maunder.html (accessed on 26 August 2020).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Mangan, J.L. Nutritional effects of tannins in animal feeds. Nutr. Res. Rev. 1988, 1, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.A.; Elzuber, E.A.; Tinay, H.A. Growth and apparent absorption of minerals in broiler chicks fed diets with low or high tannin content. Trop. Anim. Hlth. Prod. 2003, 35, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.E.; Butler, L.G. Tannins and lignins. In Herbivores: Their Interactions with Secondary Plant Metabolites; Rosenthal, G.A., Berbenbaum, M.R., Eds.; Academic Press: New York, NY, USA, 1991; pp. 355–388. [Google Scholar]
- Barbehenn, R.V.; Constable, C.P. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Woller, R.; Würdig, G. Chemie des Weines; Ulmer: Stuttgart, Germany, 1989. [Google Scholar]
- Porter, L.J. Methods in plant biochemistry. In Plant Phenolics; Harborne, J.B., Ed.; Academic Press: London, UK, 1989. [Google Scholar]
- Khanbabaee, K.; Van Ree, T. Tannins: Classification and definition. Nat. Prod. Rep. 2001, 1, 641–649. [Google Scholar]
- Fraga-Corral, M.; García-Oliveira, P.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillouet, J.M.; Romieu, C.; Schoefs, B. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann. Bot. 2013, 112, 1003–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbenz, A.; Avérous, L. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 2015, 17, 2626–2646. [Google Scholar] [CrossRef] [Green Version]
- Grasel, F.S.; Ferrao, M.F. A rapid and non-invasive method for the classification of natural tannin extracts by nearinfrared spectroscopy and PLS-DA. Anal. Methods 2016, 8, 644–649. [Google Scholar] [CrossRef]
- Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. 1980, 1, 2278–2286. [Google Scholar] [CrossRef]
- Hagerman, A.E. Tannin-protein interactions. ACS Symp. Ser. 1992, 506, 236–247. [Google Scholar]
- Isam, E.; Hussein, E.; Ishak, C.Y. Determination of tannins of three common Acacia species of Sudan. Adv. Chem. 2014. [Google Scholar] [CrossRef] [Green Version]
- Amarowicz, R. Tannins: The new natural antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 549–551. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L. Condensed and hydrolysable tannins as antioxidants influencing the health. Min. Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef]
- Galloway, D.F. The Biological Significance of Tannins: An Overview. In Chemistry and Significance of Condensed Tannins; Hemingway, R.W., Karchesy, J.J., Branham, S.J., Eds.; Springer: Boston, MA, USA, 1989. [Google Scholar]
- Sing, A.P.; Kumar, S. Applications of Tannins in Industry. Structural properties, Biological properties and Current knowledge. IntechOpen 2019. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Fouuld, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Zhao, S.; Sudler, R.; Ayers, S.; Friedman, S.; Chen, S.; McDermott, P.F.; McDermott, S.; Wagner, D.D.; Meng, J. The isolation of antibiotic-resistant Salmonella from retail ground meats. N. Engl. J. Med. 2011, 345, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, F.J.; Nunnery, J.A.; Bair, H.D. Antimicrobial resistance in zoonotic enteric pathogens. Rev. Sci. Tech. 2004, 23, 485–496. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Porrero, M.C.; Mentaberre, G.; Sánchez, S.; Fernández-Llario, P.; Casas-Díaz, E.; Mateos, A.; Vidal, D.; Lavín, S.; Fernández-Garayzábal, J.-F.; Domínguez, L. Carriage of Staphylococcus aureus by free-living wild animals in Spain. Appl. Environ. Microbiol. 2014, 80, 4865–4870. [Google Scholar] [CrossRef] [Green Version]
- Alali, W.Q.; Thakur, S.; Berghaus, R.D.; Martin, M.P.; Gebreyes, W.A. Prevalence and distribution of Salmonella in organic and conventional poultry farms. Foodborne Pathog. Dis. 2010, 7, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Hong, J.; Bae, W.; Koo, H.C.; Kim, S.H.; Park, Y.H. Prevalence, antibiograms, and transferable tet(O)plasmid of Campylobacter jejuni and Campylobacter coli isolated from raw chicken, pork, and human clinical cases in Korea. J. Food Prot. 2010, 73, 1430–1437. [Google Scholar] [CrossRef]
- Korotkevich Yu, V. Antibiotic resistance analysis of Enterococcus spp. and Enterobacteriaceae spp. isolated from food. Probl. Nutr. 2016, 85, 5–13. [Google Scholar]
- Altalhi, A.D.; Gherbawy, Y.A.; Hassan, S.A. Antibiotic Resistance in Escherichia coli Isolated from Retail Raw Chicken Meat in Taif, Saudi Arabia. Foodborne Pathog. Dis. 2009. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Checkley, S.; Avery, B.; Chalmers, G.; Bohaychuk, V.; Boerlin, P.; Reid-Smith, R.; Aslam, M. Antimicrobial Resistance and Resistance Genes in Escherichia coli Isolated from Retail Meat Purchased in Alberta, Canada. Foodborne Pathog. Dis. 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Gedir, J.V.; Sporns, P.; Hudson, R.J. Extraction of condensed tannins from cervid feed and faeces and quantification using a radial diffusion assay. J. Chem. Ecol. 2005, 31, 2761–2773. [Google Scholar] [CrossRef]
- Minussi, R.C.; Rossi, M.; Bologna, L.; Cordi, L.; Rotilio, D.; Pastore, G.M.; Duran, N. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem. 2003, 82, 409–416. [Google Scholar] [CrossRef]
- Haslam, E. Natural polyphenols (Vegetatable Tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Sieniawska, E.; Baj, T. Tannins. In Pharmacognosy. Fundamentals, Applications and Strategies; Simone, B.-M., Rupika, D., Eds.; Academic Press: Cambridge, UK, 2017. [Google Scholar]
- Graziani, R.; Tosi, G.; Denti, R. In vitro antimicrobial activity of Silvafeed ENC on bacterial strains of poultry origin. In Proceedings of the 12th European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Li, Y.; Song, G. Study on bacteriostasis of chestnut shell extract. Chem. Ind. For. Prod. 2004, 4, 61–64. [Google Scholar]
- Özcan, M. Effect of sumach (Rhus coriaria L.) extracts on the oxidative stability of peanut oil. J. Med. Food 2003, 86, 2010–2037. [Google Scholar] [CrossRef]
- Kaur, K.; Husheem, M.; Arora, S.; Härkönen, P.; Subodh, K.K. In vitro bioactivity-guided fractionation and characterization of polyphenolic inhibitory fractions from Acacia nilotica (L.). J. Ethnopharmacol 2005, 99, 353–360. [Google Scholar] [CrossRef]
- Costabile, A.; Sanghi, S.; Martín-Pelaez, S.; Mueller-Harvey, I.; Gibson, G.R.; Rastall, R.A.; Klinder, A. Inhibition of Salmonella Typhimurium by tannins in vitro. J. Food Agric. Environ. 2011, 9, 119–124. [Google Scholar]
- Attia, M.F.A.; El-din, A.N.M.N.; El-zarkouny, S.Z.; El-zaiat, H.M. Impact of Quebracho Tannins Supplementation on Productive and Reproductive Efficiency of Dairy Cows. Sci. J. Anim. Sci. 2016, 6, 269–288. [Google Scholar] [CrossRef] [Green Version]
- Tosi, G.; Massi, P.; Antongiovanni, M.; Buccioni, A.; Minieri, S.; Marenchino, L.; Mele, M. Efficacy Test of a Hydrolysable Tannin Extract Against Necrotic Enteritis in Challenged Broiler Chickens. Ital. J. Anim. Sci. 2013, 12, e62. [Google Scholar] [CrossRef]
- Hur, S.N.; Molan, A.L.; Cha, J.O. Effects of Feeding Condensed Tannin-containing Plants on Natural Coccidian Infection in Goats. Asian-Aust. J. Anim. Sci. 2005, 18, 1262–1266. [Google Scholar]
- Zhou, X.; Du, G. Applications of tannin resin adhesives in the wood industry. In Tannins—Structural Properties, Biological Properties, and Current Knowledge; Aires, A., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Custers, P.A.J.L.; Rushbrook, R.; Pizzi, A.; Knauff, C.J. Industrial applications of wattle-tannin/urea-formaldehyde fortified starch adhesives for damp-proof corrugated cardboard. Holzverwert. 1979, 31, 131–133. [Google Scholar]
- Saayman, H.M.; Brown, C.H. Wattle-base tannin-starch adhesives for corrugated containers. Forest Prod. J. 1977, 27, 21–25. [Google Scholar]
- Mugedo, J.Z.A.; Waterman, P.G. Sources of tannin: Alternatives to wattle (Acacia mearnsii) among indigenous Kenyan species. Econ. Bot. 1992, 46, 55–63. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moubarik, A.; Ahmed, A.; Pizzi, A.; Charrier, F. Preparation and mechanical characterization of particle board made from maritime pine and glued with bio-adhesives based on cornstarch and tannins. Maderas. Cienc. Tecnol. 2010, 12, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Medugu, C.I.; Saleh, B.; Igwebuike, J.U.; Ndirmbita, R.L. Strategies to improve the utilization of tannin-rich feed materials by poultry. Int. J. Poult. Sci. 2012, 11, 417. [Google Scholar]
- Butler, L.G.; Riedl, D.J.; Lebryk, D.G.; Blytt, H.J. Interaction of proteins with sorghum tannin: Mechanism, specificity and significance. J. Am. Oil Chem. Soc. 1984, 61, 916–920. [Google Scholar] [CrossRef]
- Bhat, T.K.; Kannan, A.; Singh, B.; Sharma, O.P. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agric. Res. 2013, 2, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.G.; Mendes, A.A.; Sartori, J.R.; de Lima Almeida Paz, I.C.; Takahashi, S.E.; Pelícia, K.; Komiyama, C.M.; Quinteiro, R.R. Digestibility of feeds containing sorghum, with and without tannin, for broiler chickens submitted to three room temperatures. Braz. J. Poult. Sci. 2004, 6, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Brestenský, M.; Nitrayová, S.; Patrás, P.; Heger, J. The quality of sorghum grain in aspect of utilization amino acids in pigs. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1032. [Google Scholar]
- Liu, H.W.; Zhou, D.; Tong, J.; Vaddella, V. Influence of chestnut tannins on welfare, carcass characteristics, meat quality, and lipid oxidation in rabbits under high ambient temperature. Meat Sci. 2012, 90, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Zoccarato, I.; Gasco, L.; Schiavone, A.; Guo, K.; Barge, P.; Rotolo, L.; Savarino, G.; Masoero, G. Effect of extract of chestnut wood inclusion (ENC®) in normal and low protein ammino acid supplemented diets on heavy broiler rabbits. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008; pp. 873–878. [Google Scholar]
- Schiavone, A.; Guo, K.; Tassone, S.; Gasco, L.; Hernandez, E.; Denti, R.; Zoccarato, I. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poult. Sci. 2008, 87, 521–527. [Google Scholar] [CrossRef]
- Rezar, V.; Salobir, J. Effects of tannin-rich sweet chestnut (Castanea sativa) wood extract supplementation on nutrient utilisation and excreta dry matter content in broiler chickens. Eur. Poult. Sci. 2014, 78, 1–10. [Google Scholar]
- Lee, S.H.; Shinde, P.L.; Choi, J.Y.; Kwon, I.K.; Lee, J.K.; Pak, S.I.; Cho, W.T.; Chae, B.J. Effects of tannic acid supplementation on growth performance, blood haematology, iron status and faecal microflora in weanling pigs. Livest. Sci. 2010, 131, 281–286. [Google Scholar] [CrossRef]
- Iji, P.A.; Khumalo, K.; Slippers, S.; Gous, R.M. Intestinal Function and Body Growth of Broiler Chickens on Maize-based Diets Supplemented with Mimosa Tannins and a Microbial Enzyme. J. Sci. Food Agric. 2004, 84, 1451–1458. [Google Scholar] [CrossRef]
- Kumar, V.; Elangovan, A.V.; Mandal, A.B.; Tyagi, P.K.; Bhanja, S.K.; Dash, B.B. Effects of feeding raw or reconstituted high tannin red sorghum on nutrient utilisation and certain welfare parameters of broiler chickens. Br. Poult. Sci. 2007, 48, 198–204. [Google Scholar] [CrossRef]
- Kyarisiima, C.C.; Okot, M.W.; Svihus, B. Use of wood ash in the treatment of high tannin sorghum for poultry feeding. S. Afr. J. Anim. Sci. 2004, 34, 110–115. [Google Scholar] [CrossRef]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch. Anim. Nutr. 2016, 70, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, R.; Liang, J.B.; Jahromi, M.F.; Shokryazdan, P.; Ebrahimi, M.; Li, C.W.; Goh, Y.M. Effects of tannic acid on performance and fatty acid composition of breast muscle in broiler chickens under heat stress. Ital. J. Anim. Sci. 2015, 14, 3956. [Google Scholar] [CrossRef] [Green Version]
- Antongiovanni, M.; Minieri, S.; Buccioni, A.; Galigani, I. Effect of a tannin from chestnut wood (Castanea sativa Miller) on cholesterol and fatty acids of eggs. Eur. Symp. Qual. Poult. Meat 2015, 22, 52. [Google Scholar]
- Minieri, S.; Buccioni, A.; Serra, A.; Galigani, I.; Pezzati, A.; Rapaccini, S.; Antongiovanni, M. Nutritional characteristics and quality of eggs from laying hens fed on a diet supplemented with chestnut tannin extract (Castanea sativa Miller). Br. Poult. Sci. 2016, 57, 824–832. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, I.H.; Kim, D.H.; Amanullah, S.M.; Kim, S.C. Nutritional characterization of tannin rich chestnut (Castanea) and its meal for pigs. J. Appl. Anim. Res. 2016, 44, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, S.; Viveros, A.; Rebol´e, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Houshmand, M.; Hojati, F.; Parsaie, S. Dietary nutrient manipulation to improve the performance and tibia characteristics of broilers fed oak acorn (Quercus Brantii Lindl). Braz. J. Poult. Sci. 2015, 17, 17–24. [Google Scholar] [CrossRef]
- Tapiwa, K.A. Polyphenols in sorghum, their effects on broilers and methods of reducing their effects: A Review. Biomed. J. Sci. Tech. Res. 2019, 19, 14058–14061. [Google Scholar] [CrossRef]
- Ravindran, G.; Ravindran, V.; Bryden, W.L. Total and ileal digestible tryptophan contents of feedstuffs for broiler chickens. J. Sci. Food Agric. 2006, 86, 1132–1137. [Google Scholar] [CrossRef]
- Maertens, L.; Štruklec, M. Technical note: Preliminary results with a tannin extract on the performance and mortality of growing rabbits in an enteropathy infected environment. World Rabbit Sci. 2006, 14, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Prevolnik, M.; Skrlep, M.; Brus, M.; Pugliese, C.; Candek-Potokar, M.; Skorjanc, D. Supplementing pig diet with 0.2% sweet chestnut (Castanea sativa Mill) wood extract had no effect on growth, carcass or meat quality. Acta Agric. Slov. 2012, 3, 83–88. [Google Scholar]
- Bee, G.; Silacci, P.; Ampuero-Kragten, S.; Čandek-Potokar, M.; Wealleans, A.L.; Litten-Brown, J.; Salminen, J.P.; Mueller-Harvey, I. Hydrolysable tannin-based diet rich in gallotannins has a minimal impact on pig performance but significantly reduces salivary and bulbourethral gland size. Animal 2016, 11, 1617–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappai, M.G.; Wolf, P.; Dimauro, C.; Pinna, W.; Kamphues, J. The bilateral parotidomegaly (hypertrophy) induced by acorn consumption in pigs is dependent on individual’s age but not on intake duration. Livest Sci. 2014, 167, 263–268. [Google Scholar] [CrossRef]
- Mashamaite, L.; Ng’ambi, J.W.; Norris, D.; Ndlovu, L.R.; Mbajiorgu, C.A. Relationship between Tannin Contents and Short-Term Biological Responses in Male Rabbits Supplemented with Leaves of Different Acacia Tree Species Grown in Limpopo Province of South Africa. Livestock Research for Rural Development. Available online: http://www.lrrd.org/lrrd21/7/mash21109.html (accessed on 26 August 2020).
- Mancini, S.; Moruzzo, R.; Minieri, S.; Turchi, B.; Cerri, D.; Gatta, D.; Sagona, S.; Felicioli, A.; Paci, G. Dietary supplementation of quebracho and chestnut tannins mix in rabbit: Effects on live performances, digestibility, carcase traits, antioxidant status, faecal microbial load and economic value. Ital. J. Anim. Sci. 2019, 18, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamary, M.; Molham, A.; Abdulwali, A.; Al-Obeide, A. In vivo effect of dietary sorghum tannins on rabbit digestive enzyme and mineral absorption. Nutr. Res. Rev. 2001, 21, 1393–1401. [Google Scholar] [CrossRef]
- Agume, A.S.; Njintang, N.Y.; Mbofung, C.M. Effect of soaking and roasting on the physicochemical and pasting properties of soybean flour. Foods 2017, 6, 12. [Google Scholar] [CrossRef]
- Vagadia, B.V.; Sai, K.V.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor. A review. Trends Food Sci. Tech. 2017, 64. [Google Scholar] [CrossRef]
- Avil´es-Gaxiola, S.; Chuck-Hernandez, C.; Sergio, O.; Sald´ıvar, S. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376. [Google Scholar] [CrossRef]
- Schons, P.; Fernanda, B.; Macedo, V.; Alves, G. Fermentation, and enzyme treatments for sorghum. Braz. J. Microbiol. 2012, 43, 89–97. [Google Scholar] [CrossRef]
- Iji, P.; Toghyani, M.; Ahiwe, E.; Omede, A.A. Alternative Sources of Protein for Poultry Nutrition. 2017. Available online: http://dx.doi.org/10.19103/AS.2016.0011.13 (accessed on 31 August 2020).
- Vadivel, V.; Pugalenthi, M. Removal of anti-nutritional/toxic substances and improvement in the protein digestibility of velvet bean (Mucuna pruriens) seeds during processing. J. Food Sci. Technol. 2008, 45, 242–246. [Google Scholar]
- Sunil, C.K.; Chidanand, D.V.; Manoj, D.; Choudhary, P.; Rawson, A. Effect of ultrasound treatment on dehulling efficiency of blackgram. J. Food Sci. Technol. 2018, 55, 2504–2513. [Google Scholar] [CrossRef]
- Mittal, R.; Nagi, H.P.S.; Sharma, P.; Sharma, S. Effect of Processing on Chemical Composition and Antinutritional Factors in Chickpea Flour. J. Food Sci. Eng. 2012. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Navale, S.A.; Swami, S.B.; Thakor, N.J. Extrusion Cooking Technology for Foods: A Review. J. Ready Eat Food. 2015, 2, 66–80. [Google Scholar]
- Kaur, S.; Sharma, S.; Singh, B.; Dar, B. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. J. Food Sci. Technol. 2015, 52, 1670–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahul, P.R.; Uday, S.A. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. Food Sci. Technol. 2016, 66, 114–123. [Google Scholar]
- Muhammad, I.; Faqir, A.; Butt, M.; Sheikh, M. Influence of Extrusion Processing on Tannin Reduction and Oil Loss in Flaxseed (Linum Usitatissimum L.) Meal. J. Food Process. Preserv. 2014, 38. [Google Scholar] [CrossRef]
- Kumar, A.; Mani, I.; Aradwad, P.; Samuel, D.V.K.; Jha, S.; Sahoo, P.K.; Sinha, J.P.; Kar, A. Effect of extrusion technique on anti-nutritional factors of sorghum-soya blends. Indian J. Agric. Sci. 2018, 88, 81–89. [Google Scholar]
- Singh, A.; Gupta, S.; Kaur, R.; Gupta, H.R. Process optimization for anti-nutrient minimization of millets. Asian J. Dairy Food Res. 2017, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rusydi, M.R.; Azlan, A. Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. Int. Food Res. J. 2012, 19, 673–677. [Google Scholar]
- Agwunobi, L.N.; Angwukam, P.O.; Cora, O.O.; Isika, M.A. Studies on the use of colocasia. esculenta (Taro cocoyam) in the diets of weaned pigs. Trop. Anim. Health Prod. 2002, 34, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Abeke, F.O.; Otu, M. Antinutrients in poultry feeds: Concerns and options. In Proceedings of the 13th Annual Conference of the Animal Science Association of Nigeria (ASAN), A.B.U Zaria, Nigeria, 15–19 September 2008; pp. 396–398. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Re´me´sy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitti, D.M.S.S.; Nozella, E.F.; Abdalla, A.L.; Bueno, I.C.S.; Silva Filho, J.C.; Costa, C.; Bueno, M.S.; Longo, C.; Vieira, M.E.Q.; Cabral Filho, S.L.S.; et al. The effect of drying and urea treatment on nutritional and anti-nutritional components of browses collected during wet and dry seasons. Anim. Feed Sci. Technol. 2005, 122, 123–133. [Google Scholar] [CrossRef]
- Elizondo, A.M.; Mercado, E.C.; Rabinovitz, B.C.; Fernandez-Miyakawa, M.E. Effect of tannins on the in vitro growth of Clostridium perfringens. Vet. Microbial. 2010, 145, 308–314. [Google Scholar] [CrossRef]
- Anderson, R.C.; Vodovnik, M.; Min, B.R.; Pinchak, W.E.; Krueger, N.A.; Harvey, R.B.; Nisbet, D.J. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro. Folia Microbial. 2012, 57, 253–258. [Google Scholar] [CrossRef]
- Van Parys, A.; Boyen, F.; Dewulf, J.; Haesebrouck, F.; Pasmans, F. The use of tannins to control Salmonella typhimurium infections in pigs. Zoonoses Public Health 2010, 57, 423–428. [Google Scholar] [CrossRef]
- Corder, R. Tannins in Some European Reds have Greater Protective Effects on Heart than Other Red Wines. Nature Online Advance Edition. News release, Queen Mary University of London. Available online: http://www.cbsnews.com/stories/2006/11/29/health/webind/main2215429.html (accessed on 5 August 2020).
- Phytolab. Phytochemicals Polyphenols—Tannic Acid. Available online: http://www.phytochemicalsinfolphytochemicals/tannic-acid.phD. (accessed on 26 July 2020).
- Kovitvadhi, A.; Gasco, L.; Ferrocino, I.; Rotolo, L.; Dabbou, S.; Malfatto, V.; Gai, F.; Peiretti, P.G.; Falzone, M.; Vignolini, C.; et al. Effect of purple loosestrife (Lythrum salicaria) diet supplementation in rabbit nutrition on performance, digestibility, health and meat quality. Animal 2016, 10, 10–18. [Google Scholar] [CrossRef]
- Bole-Hribovsek, V.M.; Drobnic-Kosorek, J.; Ponebsek, D.; Moran, D.M. Minimum inhibitory concentrations of Farmatan dried all-natural tannic acid (flavoring) feed additive on pathogenic strains of Clostridium perfringens and Escherichia coli plus isolates of four salmonella species in vitro. In Proceedings of the Poultry Science Assn. annual meeting, Athens, Greece, 9–12 July 2012. [Google Scholar]
- Kamijo, M.; Kanazawa, T.; Funaki, M.; Nishizawa, M.; Yamagishi, T. Effects of Rosa rugosa petals on intestinal bacteria. Biosci. Biotechnol. Biochem. 2008, 72, 773–777. [Google Scholar] [CrossRef]
- Girard, M.; Bee, G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020, 14, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, D.; Wiliczkiewicz, A.; Skorupińska, J.; Orda, J.; Kuryszko, J.; Tschirch, H. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. Br. J. Poult. Sci. 2009, 50, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, L.; Pinton, P.; Avantaggiato, G.; Oswald, I.P.; Solfrizzo, M. Grape pomace, an agricultural byproduct reducing mycotoxin absorption: In vivo assessment in pig using urinary biomarkers. J. Agric. Food Chem. 2016, 64, 6762–6771. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
Antibiotic Resistant Strains | Animal Product | References |
---|---|---|
Staphylococcus | Cattle meat and milk | [32] |
Salmonella | Poultry meat | [33] |
Campylobacter | Poultry meat | [34] |
Escherichia coli | Cattle Liver and minced turkey meat | [35] |
Escherichia coli | Poultry meat | [36] |
Escherichia coli | Poultry meat | [37] |
Components | Medicinal Uses | References |
---|---|---|
Sweet chestnut extracts | Escherichia coli, Bacillus subtilis, Salmonella enterica serovar Enteritidis | [43] |
Extract of chestnut shell | Enteritidis, Clostridium perfringens, Staphylococcus aureus, and Campylobacter jejuni | [44] |
Gall nuts | Treatment of diarrhea and dermatitis | [45] |
Acacia Nilotica | Antimutagenic and cytotoxic effects | [46] |
Sweet chestnut extracts | Reduction of Salmonella infection | [47] |
Quebracho Tannins | Reduction of worm eggs counts and inhibition of development of nematodes and lungworms | [48] |
Chestnut extracts | Control of Clostridium perfringens | [49] |
Pine needles and dry oak leaves | Control of coccidian infection | [50] |
Plant Source/Tannin | Animal (Monogastric) | Concentration/Application | Effects | References |
---|---|---|---|---|
Chestnut (Castanea) HT | Swine/pig | 1%, 2% and 3% | Liver not affected. Changes in the intestine: villus height increased, mucosal thickness and villus perimeter; reduced large intestinal apoptosis and mitosis | [70] |
Sweet chestnut wood extract | Chickens (broilers) | 0.07% and 0.2% | No antinutritive effects | [65] |
Tannic acid (TA) | Chickens (broilers) | 1% Tannic acid different climatic conditions | Better quality of fatty acid profile of breast muscle of broilers | [71] |
Chestnut (Castanea) HT | Chickens (layers) | 0.20% | Increased monounsaturated fatty acid and reduced cholesterol content of eggs | [72] |
Chestnut tannin extract (Castanea sativa Miller) HT | Chickens (layers) | 2 g/kg | Unsaturated fatty acids increased; cholesterol significantly decreased: −17% in WLT and −9% in MUT | [73] |
High-tannin red sorghum (Sorghum vulgaris) HTS | Chickens (broilers) | 16 g/kg (reconstituted red sorghum) | Utilisations of phosphorus, nitrogen and calcium retention were similar | [68] |
Chestnut (Castanea) | Pigs | 0%, 5%, 10% and 15% | Reduction in digestibility of dry matter, crude protein, ether extract, crude ash and tannin decreased linearly (p < 0.05) with increasing chestnut meal supplementation | [74] |
Tannin Concentrations | Tannin Source | Monogastric Animal | Influenced/Affected Parameter | References |
---|---|---|---|---|
0.16–0.19% | Chestnut | Pigs | Increased growth performance | [4] |
0.71–1.5% | Chestnut | Pigs | No effect on feed intake, body weight gain and carcass traits; reduced feed efficiency | [81] |
1–3% | Chestnut | Pigs | Increased small intestinal villus height, villus perimeter and mucosal thickness | [70] |
5–10% | Grape pomace | Broilers | No effect on growth performance; increased oxidative stability and polyunsaturated fatty acids content of thigh meat | [75] |
1% | Tannic acid | Broilers | Decreased body weight gain and feed intake; improved the fatty acid profile of breast muscle | [71] |
Chestnut | layers | No effect on egg weights, cell thickness or yolk colour; reduced cholesterol content | [72] | |
0.45% and 0.5% | Chestnut | Rabbits | Increased live weight gain and feed intake of rabbits | [79,86] |
0.5% and 1.0% | Quebracho and chestnut | Rabbits | Had no effect on growth performance | [62,84] |
4% | Acacia karroo, Acacia nilotica and Acacia tortilis | Rabbits | No significant differences in intake and digestibility | [83] |
Processing Technique | Feedstuff | Effectiveness | References |
---|---|---|---|
Enzyme supplementation | Sorghum | The enzyme tannase reduced both hydrolysable and condensed tannins by 40.6% | [89,90] |
Dehulling | Chickpeas | Reducing tannin level without lowering the nutrient content of the grain | [94] |
Faba beans | Reduced about 92% of tannins | [95] | |
Soaking | Sorghum | Reducing tannin level without lowering the nutrient content of the grain | [69,78] |
Velvet beans | Decreased about 73–82% of tannins | [92] | |
Alkali treatment | Sorghum | Reducing tannin level without lowering the nutrient content of the grain | [78] |
Extrusion | Flaxseed | Significant reduction of tannins with minimum oil loss in flaxseed meal | [99] |
Lentils | Reduced the tannin content in lentil splits | [100] | |
Sorghum | Reduction to the extent of 34.52% to 57.41% | [101] | |
Germination | Pearl millets | Maximum reductions in tannins up to 75% | [102] |
Peanuts | Reduction of tannins by 57.12% | [103] | |
Cooking | Cocoyam | Reduction of antinutrients in tuber crops | [104] |
Autoclaving | Sorghum | Reduction to the extent of 34.52% to 57.41% | [101] |
Germination | Pearl millets | Maximum reductions in tannins up to 75% | [102] |
Peanuts | Reduction of tannins by 57.12% | [103] |
Plant Source/Tannin | Animal/Monogastric | Application Rates | Health Benefits | References |
---|---|---|---|---|
Chestnut tannin (HT) | Chickens | 0, 250, 500 and 1000 mg/kg | 250 mg/kg reduced number of E. coli and coliform bacteria in small intestine. Greatest number of Lactobacillus observed in supplementation of 1000 mg/kg | [49] |
Purple loosestrife (Lythrum salicatia) | Rabbit | 0.2%, 0.4% and 0.3% | Increased total white blood cells in rabbit | [113] |
Chestnut (HT) | Chickens (broiler) | 0.15% to 1.2% | Reduced bacteria in the gut. Clostridium perfringens (Eimeria maxima, Eimeria tenella and Eimeria acervulina) | [117] |
Grape pomace (CT) | Pigs | 2.80% | Reduction in the absorption of mycotoxins in the gastrointestinal surface | [118] |
Grape pomace (CT) | Chickens (broiler) | 6% | Increased commensal bacteria (Lactobacillus) and decreased the counts of clostridium bacteria in ileal content | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, Z.M.; Manyelo, T.G.; Selaledi, L.; Mabelebele, M. The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules 2020, 25, 4680. https://doi.org/10.3390/molecules25204680
Hassan ZM, Manyelo TG, Selaledi L, Mabelebele M. The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules. 2020; 25(20):4680. https://doi.org/10.3390/molecules25204680
Chicago/Turabian StyleHassan, Zahra Mohammed, Tlou Grace Manyelo, Letlhogonolo Selaledi, and Monnye Mabelebele. 2020. "The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients" Molecules 25, no. 20: 4680. https://doi.org/10.3390/molecules25204680
APA StyleHassan, Z. M., Manyelo, T. G., Selaledi, L., & Mabelebele, M. (2020). The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules, 25(20), 4680. https://doi.org/10.3390/molecules25204680