Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on 99mTc-TRODAT-1 SPECT Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. The Imaging Conditions of 99mTc TRODAT-1 SPECT
2.3. The Deep Learning Method Concept
2.4. Popular Pre-trained Models in CNN
2.4.1. AlexNet
2.4.2. GoogLeNet
2.4.3. ResNet
2.4.4. VGG
2.4.5. DenseNet
3. Experimental Results
4. Discussion
4.1. Comparison between Published Literature Methods and the Presented Method
4.2. The Related Literature on Multiple Stages Classification in Medical Images
4.3. The Presented Deep Learning Method
5. Conclusions
- When using deep convolutional neural network technology to classify 99mTc-Trodat-1 PD images for the original grayscale images processed through five pre-trained models (AlexNet, GoogLeNet, VGG19, ResNet, DenseNet201) the highest accuracy was 0.83 for AlexNet. In six categories (healthy, HYS I~V), the best accuracy was 0.78 obtained by VGG19 in four categories (healthy, early, mid, late);
- For color images, DenseNet201 yielded the highest accuracy of 0.85 in four categories. In six categories, the highest accuracy was 0.78 also obtained using DenseNet201;
- Overall, the pre-trained models could produce accurate results when using grayscale images. In this case, the pseudocolor images might be non-essential;
- CNN could obtain high classification accuracy in multiple categories of SPECT PD scans;
- However, the establishment of the CNN classification model was very time-consuming, and the results had low interpretability in clinic.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Popa, T.; Ibanez, L.; Levy, E.; White, A.; Bruno, J.; Cleary, K. Tumor volume measurement and volume measurement comparison plug-ins for VolView using ITK. In Proceedings of the Medical Imaging, MIUA 2017, Edinburgh, UK, 11–13 July 2017; pp. 61411B–61418B. [Google Scholar]
- Dutour, A.; Monteil, J.; Paraf, F.; Charissoux, J.L.; Kaletta, C.; Sauer, B.; Naujoks, K.; Rigaud, M. Endostatin cDNA/cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: Study in a human-like rat orthotopic tumor. Mol. Ther. 2005, 11, 311–319. [Google Scholar] [CrossRef]
- Sun, H. An improved positron emission tomography (PET) reconstruction of 2D activity distribution using higher order scattered data. Mater. Sci. 2016. Available online: http://hdl.handle.net/1993/31782 (accessed on 10 October 2020).
- Bailey, D.L.; Willowson, K.P. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J. Nucl. Med. 2013, 54, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandervoort, E.; Celler, A.; Harrop, R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys. Med. Biol. 2007, 52, 1527. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-S.; Lee, M.-S.; Lin, J.-C.; Chen, C.-Y.; Yang, Y.-W.; Lin, S.-Z.; Wey, S.-P. Usefulness of brain 99m Tc-TRODAT-1 SPET for the evaluation of Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Galvan, A.; Devergnas, A.; Wichmann, T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front. Neuroanat. 2015, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Pirker, W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: How close is it? Mov. Disord. 2003, 18, S43–S51. [Google Scholar] [CrossRef]
- Benamer, H.T.; Patterson, J.; Wyper, D.J.; Hadley, D.M.; Macphee, G.; Grosset, D.G. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov. Disord.Off. J. Mov. Disord. Soc. 2000, 15, 692–698. [Google Scholar] [CrossRef]
- Booij, J.; Speelman, J.D.; Horstink, M.W.; Wolters, E.C. The clinical benefit of imaging striatal dopamine transporters with [123 I] FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur. J. Nucl. Med. 2001, 28, 266–272. [Google Scholar] [CrossRef]
- Gleave, J.A.; Farncombe, T.H.; Saab, C.; Doering, L.C. Correlative single photon emission computed tomography imaging of [123I] altropane binding in the rat model of Parkinson’s. Nucl. Med. Biol. 2011, 38, 741–749. [Google Scholar] [CrossRef]
- Gharibkandi, N.A.; Hosseinimehr, S.J. Radiotracers for imaging of Parkinson’s disease. Eur. J. Med. Chem. 2019, 166, 75–89. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 1998, 50, 318. [Google Scholar] [CrossRef]
- Lu, C.-S.; Weng, Y.-H.; Chen, M.-C.; Chen, R.-S.; Tzen, K.-Y.; Wey, S.-P.; Ting, G.; Chang, H.-C.; Yen, T.-C. 99mTc-TRODAT-1 imaging of multiple system atrophy. J. Nucl. Med. 2004, 45, 49–55. [Google Scholar] [PubMed]
- Trott, C.M.; El Fakhri, G. Sequential and simultaneous dual-isotope brain SPECT: Comparison with PET for estimation and discrimination tasks in early Parkinson disease. Med. Phys. 2008, 35, 3343–3353. [Google Scholar] [CrossRef] [Green Version]
- Hung, G.-U.; Chiu, P.-Y. The Value of 99mTc-Trodat-1 SPECT for Discriminating Dementia with Lewy Bodies and Alzheimer’s disease. J. Nucl. Med. 2017, 58, 1279. [Google Scholar]
- Maciel, R.; Maia, D.; de Lima, C.; Cardoso, F. Evidence of striatal dopaminergic dysfunction Sydenham’s chorea in remission with (99m) tc-trodat-1 Spect. Mov. Disord. 2016, 31, S351. [Google Scholar]
- Lee, L.-T.; Tsai, H.C.; Chi, M.H.; Chang, W.H.; Chen, K.C.; Lee, I.H.; Chen, P.S.; Yao, W.J.; Chiu, N.T.; Yang, Y.K. Lower availability of striatal dopamine transporter in generalized anxiety disorder: A preliminary two-ligand SPECT study. Int. Clin. Psychopharmacol. 2015, 30, 175–178. [Google Scholar] [CrossRef]
- Tripathi, M.; Arora, G.; Das, C.J.; Grover, T.; Gupta, R.; Bal, C. Incidental detection of intracranial tuberculomas on (99m) Tc-TRODAT-1 SPECT/CT. Clin. Nucl. Med. 2015, 40, e321–e322. [Google Scholar] [CrossRef]
- Lee, J.-D.; Chu, Y.-H.; Chen, C.-W.; Lin, K.-J. Multi-image registration for evaluating the 99mTc-TRODAT-1 of Parkinson’s Rat Model. In Proceedings of the Engineering in Medicine and Biology Society, 2009, EMBC 2009, Annual International Conference of the IEEE, Minneapolis, MN, USA, 3–6 September 2009; pp. 5801–5804. [Google Scholar]
- Bernsen, M.R.; Vaissier, P.E.; Van Holen, R.; Booij, J.; Beekman, F.J.; de Jong, M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Kijewski, M.; El Fakhri, G.; Moore, S. Performance of simultaneous and sequential Tc-99m/I-123 SPECT imaging in estimation of striatal activity. In Proceedings of the 2003 IEEE Nuclear Science Symposium Conference Record, Portland, OR, USA, 19–25 October 2003; pp. 3134–3136. [Google Scholar]
- Acton, P.D.; Choi, S.-R.; Plössl, K.; Kung, H.F. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 691–698. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Peng, G.-S.; Cheng, C.-A.; Lin, C.-C.; Huang, W.-S.; Hsueh, C.-J.; Lee, J.-T. 99mTc-TRODAT-1 and 123I-IBZM SPECT studies in a patient with extrapontine myelinolysis with parkinsonian features. Ann. Nucl. Med. 2009, 23, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Kiryu, S.; Yasaka, K.; Akai, H.; Nakata, Y.; Sugomori, Y.; Hara, S.; Seo, M.; Abe, O.; Ohtomo, K. Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: A proof of concept study. Eur. Radiol. 2019, 29, 6891–6899. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Mochizuki, Y.; Shiomi, K.; Nakazato, M.; Mochizuki, H. Spiral drawing: Quantitative analysis and artificial-intelligence-based diagnosis using a smartphone. J. Neurol. Sci. 2020, 411, 116723. [Google Scholar] [CrossRef] [Green Version]
- Cireşan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. arXiv 2012. Available online: https://arxiv.org/abs/1202.2745 (accessed on 13 October 2004).
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012. Available online: https://arxiv.org/abs/1207.0580 (accessed on 13 October 2004).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014. Available online: https://arxiv.org/abs/1409.1556 (accessed on 15 August 2020).
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4700–4708. [Google Scholar]
- Farooq, A.; Anwar, S.; Awais, M.; Rehman, S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar]
- Talo, M.; Yildirim, O.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Convolutional neural networks for multi-class brain disease detection using MRI images. Comput. Med Imaging Graph. 2019, 78, 101673. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, F.; Khan, M.U.G.; Rehmat, A.; Iqbal, S.; Saba, T.; Rehman, A.; Mehmood, Z. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural Networks. J. Med. Syst. 2020, 44, 37. [Google Scholar] [CrossRef]
- Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 843–852. [Google Scholar]
- Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. High-accuracy classification of Parkinson’s disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging. IEEE J. Biomed. Health Inform. 2016, 21, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Brahim, A.; Khedher, L.; Górriz, J.M.; Ramírez, J.; Toumi, H.; Lespessailles, E.; Jennane, R.; El Hassouni, M. A proposed computer-aided diagnosis system for Parkinson’s disease classification using 123 I-FP-CIT imaging. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Adeli, E.; Wu, G.; Saghafi, B.; An, L.; Shi, F.; Shen, D. Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Sci. Rep. 2017, 7, 41069. [Google Scholar] [CrossRef]
- Rumman, M.; Tasneem, A.N.; Farzana, S.; Pavel, M.I.; Alam, M.A. Early detection of Parkinson’s disease using image processing and artificial neural network. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 256–261. [Google Scholar]
Stage | Hoehn and Yahr Scale |
---|---|
1 | Unilateral involvement only usually with minimal or no functional disability. |
2 | Bilateral or midline involvement without impairment of balance. |
3 | Bilateral disease: mild to the moderate disability with impaired postural reflexes; physically independent. |
4 | Severely disabling disease; still able to walk or stand unassisted. |
5 | Confinement to bed or wheelchair unless aided. |
Class | Subjects | Sex | Age | Slice Images |
---|---|---|---|---|
HC | 6 | 3 F, 3 M | 48 ± 14.7 | 30 |
HYS I | 22 | 13 F, 9 M | 68 ± 16.4 | 110 |
HYS II | 27 | 15 F, 12 M | 69 ± 10.3 | 135 |
HYS III | 53 | 36 F, 17 M | 71 ± 9.8 | 265 |
HYS IV | 87 | 47 F, 40 M | 69 ± 10 | 435 |
HYS V | 7 | 5 F, 2 M | 65 ± 11.5 | 35 |
Item | Conv1 | Pool1 | Conv2 | Pool2 | Conv3 | Conv4 | Conv5 | Pool5 |
---|---|---|---|---|---|---|---|---|
Filter size | 11 × 11 | 3 × 3 | 5 × 5 | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 |
Stride | 4 | 2 | 1 | 2 | 1 | 1 | 1 | 2 |
Padding | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 0 |
Name | Input Size | Layers | File Size | Training Time(s) |
---|---|---|---|---|
AlexNet | 227 × 227 | 25 | 227 MB | 25.4 |
GoogLeNet | 224 × 224 | 144 | 27 MB | 62.7 |
ResNet50 | 224 × 224 | 114 | 96 MB | 138.4 |
ResNet101 | 224 × 224 | 347 | 167 MB | 326.1 |
VGG19 | 224 × 224 | 47 | 535 MB | 162.1 |
DenseNet201 | 224 × 224 | 709 | 77 MB | 880.7 |
Category = 4 (Healthy, Early, Mid, and Late PD) | ||||||||
---|---|---|---|---|---|---|---|---|
Net | Image Format | Batchsize | MaxEpochs | Accuracy | Recall | Precision | F-Score | Kappa |
AlexNet | Gray | 80 | 40 | 0.825 | 0.753 | 0.874 | 0.809 | 0.725 |
Color | 162 | 81 | 0.622 | 0.504 | 0.701 | 0.587 | 0.397 | |
GoogLeNet | Gray | 14 | 7 | 0.687 | 0.673 | 0.728 | 0.700 | 0.518 |
Color | 34 | 17 | 0.586 | 0.492 | 0.672 | 0.568 | 0.368 | |
VGG19 | Gray | 20 | 10 | 0.819 | 0.758 | 0.870 | 0.810 | 0.720 |
Color | 24 | 12 | 0.807 | 0.808 | 0.838 | 0.823 | 0.707 | |
ResNet50 | Gray | 8 | 4 | 0.739 | 0.729 | 0.710 | 0.719 | 0.607 |
Color | 8 | 4 | 0.827 | 0.837 | 0.749 | 0.791 | 0.743 | |
ResNet101 | Gray | 6 | 3 | 0.767 | 0.691 | 0.668 | 0.679 | 0.656 |
Color | 12 | 6 | 0.831 | 0.824 | 0.857 | 0.840 | 0.744 | |
DenseNet | Gray | 18 | 9 | 0.807 | 0.722 | 0.843 | 0.778 | 0.704 |
Color | 16 | 8 | 0.855 | 0.821 | 0.903 | 0.860 | 0.724 |
Category = 6 (Healthy and Parkinson Disease Stages I to V.) | ||||||||
---|---|---|---|---|---|---|---|---|
Net | Image Format | Batchsize | MaxEpochs | Accuracy | Recall | Precision | F-Score | Kappa |
AlexNet | Gray | 96 | 48 | 0.774 | 0.742 | 0.853 | 0.794 | 0.679 |
Color | 120 | 60 | 0.521 | 0.349 | 0.491 | 0.408 | 0.282 | |
GoogLeNet | Gray | 34 | 17 | 0.617 | 0.532 | 0.695 | 0.603 | 0.439 |
Color | 28 | 14 | 0.556 | 0.378 | 0.478 | 0.422 | 0.362 | |
VGG19 | Gray | 24 | 12 | 0.778 | 0.612 | 0.665 | 0.637 | 0.683 |
Color | 22 | 11 | 0.754 | 0.746 | 0.747 | 0.747 | 0.669 | |
ResNet50 | Gray | 20 | 10 | 0.681 | 0.56 | 0.768 | 0.647 | 0.537 |
Color | 18 | 9 | 0.754 | 0.661 | 0.758 | 0.706 | 0.651 | |
ResNet101 | Gray | 16 | 8 | 0.722 | 0.602 | 0.645 | 0.623 | 0.603 |
Color | 18 | 9 | 0.770 | 0.699 | 0.777 | 0.736 | 0.673 | |
DenseNet201 | Gray | 16 | 8 | 0.762 | 0.670 | 0.739 | 0.703 | 0.661 |
Color | 8 | 4 | 0.778 | 0.696 | 0.814 | 0.750 | 0.680 |
Author (year) [reference] | Category | Sample Size | Method/# Feature | Classifier | Accuracy |
---|---|---|---|---|---|
R. Prashanth et al. (2016) [37] | Normal | 208 | Machine learning/34 | SVM | 0.97 |
PD | 427 | ||||
Abdelbasset Brahim et al. (2017) [38] | Normal | 111 | Voxels as Features approach and Principal Component Analysis | SVM | 0.88 |
PD | 158 | ||||
Ehsan Adeli et al. (2017) [39] | Normal | 169 | Kernel-based Feature | SVM | 0.95 |
PD | 369 | ||||
Mosarrat Rumman et al. (2018) [40] | Normal | 100 | ROI detection and area calculation | ANN | 0.94 |
PD | 100 | ||||
Presented Method: Deep CNN | 4 stage | Healthy = 6 early = 245 mid = 265 late = 470 | Popular Pre-trained models in CNN | Alex Net (grayscale) | 0.83 |
DenseNet (color) | 0.85 | ||||
6 stage | Healthy =6 HYS1= 110 HYS2 = 135 HYS3 = 265 HYS4 = 435 HYS5 = 35 | Popular Pre-trained models in CNN | VGG19 (grayscale) | 0.78 | |
DenseNet (color) | 0.78 |
Images | Batch Size | Epoch | Training Time (s) | Accuracy |
---|---|---|---|---|
327 | 10 | 10 | 602.87 | 0.55 |
327 | 20 | 10 | 2942.46 | 0.56 |
327 | 30 | 10 | 3905.14 | 0.54 |
327 | 40 | 10 | GPU out of memory | |
672 | 10 | 10 | 236.36 | 0.78 |
672 | 20 | 10 | 4537.95 | 0.77 |
672 | 30 | 10 | 8318.34 | 0.63 |
672 | 40 | 10 | GPU out of memory |
Sample Availability: Samples of the study images all proved by the Medical Ethics Committee of E-DA Hospital approved this clinical study (EMRP-100-054(RIII)). If necessary, it can provide the original images data. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-Y.; Yeh, L.-R.; Chen, T.-B.; Du, W.-C.; Huang, Y.-H.; Twan, W.-H.; Lin, M.-C.; Hsu, Y.-H.; Wu, Y.-C.; Chen, H.-Y. Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on 99mTc-TRODAT-1 SPECT Images. Molecules 2020, 25, 4792. https://doi.org/10.3390/molecules25204792
Hsu S-Y, Yeh L-R, Chen T-B, Du W-C, Huang Y-H, Twan W-H, Lin M-C, Hsu Y-H, Wu Y-C, Chen H-Y. Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on 99mTc-TRODAT-1 SPECT Images. Molecules. 2020; 25(20):4792. https://doi.org/10.3390/molecules25204792
Chicago/Turabian StyleHsu, Shih-Yen, Li-Ren Yeh, Tai-Been Chen, Wei-Chang Du, Yung-Hui Huang, Wen-Hung Twan, Ming-Chia Lin, Yun-Hsuan Hsu, Yi-Chen Wu, and Huei-Yung Chen. 2020. "Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on 99mTc-TRODAT-1 SPECT Images" Molecules 25, no. 20: 4792. https://doi.org/10.3390/molecules25204792
APA StyleHsu, S. -Y., Yeh, L. -R., Chen, T. -B., Du, W. -C., Huang, Y. -H., Twan, W. -H., Lin, M. -C., Hsu, Y. -H., Wu, Y. -C., & Chen, H. -Y. (2020). Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on 99mTc-TRODAT-1 SPECT Images. Molecules, 25(20), 4792. https://doi.org/10.3390/molecules25204792