The Influence of Temperature Differences in Smoking Chamber and Furnace and Smoking Time on the Quality of Medium-Ground Sausages
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Sausages
- Country sausage. Ingredients: pork (100 g of the product was made from 122 g of meat), salt, pepper and garlic.
- Home sausage. Ingredients: pork (100 g of the product was made of 110 g of meat), salt, pepper and garlic.
- Bieszczady sausage. Ingredients: pork and beef (100 g of the product was made from 98 g of pork and 27 g of beef), salt and natural spices.
3.2. Texture Measurement
3.3. Chemical Composition
3.4. Colour Measurement
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Verbeke, W.; Perez-Cueto, F.J.A.; de Barcellos, M.D.; Krystallis, A.; Grunert, K.G. European citizen and consumer attitudes and preferences regarding beef and fork. Meat Sci. 2010, 84, 284–292. [Google Scholar] [CrossRef]
- De Castro Cardoso Pereira, P.M.; dos Reis Baltazar Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A.; et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health: A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Effect of heat treatment on changes in texture, structure and properties of Thai indigenous chicken muscle. Food Chem. 2005, 93, 337–348. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Textural properties of potatoes (Solanum tuberosum L., cv. Monalisa) as affected by different cooking processes. J. Food Eng. 2008, 88, 28–35. [Google Scholar] [CrossRef]
- Ayadi, M.; Makni, I.; Attia, H. Thermal diffusivities and influence of cooking time on textural, microbiological and sensory characteristics of turkey meat prepared products. Food Bioprod. Process. 2009, 87, 327–333. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Dąbrowska, E.; Jankowska, B.; Kwiatkowska, A.; Cierach, M. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast. Meat Sci. 2012, 91, 195–202. [Google Scholar] [CrossRef]
- Ovissipour, M.; Rasco, B.; Tang, J.; Sablani, S. Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Res. Int. 2013, 53, 141–148. [Google Scholar] [CrossRef]
- Ko, S.; Yoo, S.H.; Lee, S.; Cho, S.; Kim, K.H.; Hwang, R. Effect of long low temperature-short high temperature cooking cycle on physicochemical properties of beef. Food Sci. Technol. Res. 2011, 17, 11–16. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. LWT Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Kosulwat, S.; Greenfiel, H.; Buckle, A. True retention of nutrients on cooking of Australian retail lamb cuts of differing carcass classification characteristics. Meat Sci. 2003, 65, 1407–1412. [Google Scholar] [CrossRef]
- Clausen, I.; Ovesen, L. Changes in fat content of pork and beef after pan-frying under different conditions. J. Food Compos. 2005, 18, 201–211. [Google Scholar] [CrossRef]
- Brugiapaglia, A.; Destefanis, G. Effect of cooking method on the nutritional value of Piemontese beef. In Proceedings of the 58th International Congress of Meat Science and Technology, Montreal, QC, Canada, 12–17 August 2012. [Google Scholar]
- Toth, L. Chemie der Räucherung; Verlag Chemie: Berlin, Germany, 1982. [Google Scholar]
- Pöhlmann, M.; Hitzel, A.; Schwägele, F.; Speer, K.; Jira, W. Contents of polycyclic aromatic hydrocarbons (PAH) and phenolic substances in Frankfurter-type sausages depending on smoking conditions using glow smoke. Meat Sci. 2012, 90, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Goulas, A.E.; Kontominas, M.G. Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Food Chem. 2005, 93, 511–520. [Google Scholar] [CrossRef]
- Kjaallstrand, J.; Petersson, G. Phenolic antioxidants in alder smoke during industrial meat curing. Food Chem. 2001, 74, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Kołakowski, E. Technologia Wędzenia Żywności; Powszechne Wydawnictwa Rolnicze i Leśne: Warszawa, Poland, 2012. [Google Scholar]
- Migowska-Calik, A.; Gomółka-Pawlicka, M.; Uradziński, J.; Lachowicz, T. Microbiological quality of traditional raw smoked mest products. Vet. Med. Sci. Prat. 2013, 69, 626–629. [Google Scholar]
- Lingbeck, J.M.; Cordero, P.; O’Bryan, C.A.; Johnson, M.G.; Ricke, S.C.; Crandall, P.G. Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Sci. 2014, 97, 197–206. [Google Scholar] [CrossRef]
- Škaljac, S.; Petrovic, L.; Tasic, T.; Ikonic, P.; Jokanovic, M.; Tomovic, V.; Džinić, N.; Šojić, B.; Tjapkin, A.; Škrbić, B. Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovska klobasa) from Serbia. Food Control 2014, 40, 12–18. [Google Scholar] [CrossRef]
- Klettner, P. Heutige Rauchertechnologien bei Fleischerzeugnissen. Fleischwirtsch 1975, 59, 17–24. [Google Scholar]
- Fletcher, D.L. Poultry meat quality. World’s Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- De Man, J.M. Mechanical properties of foods. In Rheology and Texture in Food Quality; De Man, J.M., Voisey, P.W., Pasper, V.F., Stanley, D.W., Eds.; The AVI Publishing Company: Westport, CT, USA, 1976; pp. 8–12. [Google Scholar]
- Nurul, H.; Alistair, T.; Lim, H.; Noryati, I. Quality characteristics of Malaysian commercial beef frankfurters. Int. Food Res. J. 2010, 17, 469–476. [Google Scholar]
- Chang, H.J.; Wang, Q.; Zhou, G.H.; Xu, X.L.; Li, C.B. Influence of weak organic acids and sodium chloride marination on characteristics of connective tissue collagen and textural properties of beef semitendinosus muscle. J. Texture Stud. 2010, 41, 279–301. [Google Scholar] [CrossRef]
- Szcześniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Farsi, S.A. Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content. J. Food Eng. 2005, 66, 505–511. [Google Scholar] [CrossRef]
- Breene, W.M. Application of texture profile analysis to instrumental food texture evaluation. J. Texture Stud. 1975, 6, 53–82. [Google Scholar] [CrossRef]
- Bhuyan, D.; Das, A.; Laskar, S.K.; Bora, D.P.; Tamuli, S.; Hazarika, M. Effect of different smoking methods on the quality of pork sausages. Vet. World 2018, 11, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Martinez, O.; Salmeron, J.; Guillen, M.D.; Casas, C. Texture profile analysis of meat products treated with commercial liquid smoke flavourings. Food Control 2004, 15, 457–461. [Google Scholar] [CrossRef]
- Yang, D.; He, Z.; Gao, D.; Qin, F.; Deng, S.; Wanh, P.; Xu, X.; Chen, J.; Zeng, M. Effects of smoking or baking procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chem. 2019, 276, 195–201. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.; Yang, T.A.; Abdulkarim, A.A. Kinetics of texture and colour in chicken sausage during superheated steam cooking. Pol. J. Food Nutr. Sci. 2016, 66, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Krysztofiak, K.; Bilska, A. Wędliny. In Towaroznawstwo Żywności Pochodzenia Zwierzęcego; Flaczyk, E., Górecka, D., Korczak, J., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2011; pp. 243–266. [Google Scholar]
- Listrat, A.; Lebert, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, T.A.; Bechtel, P.J.; Hernot, D.C.; Parsons, C.M.; Swanson, K.S.; Smiley, S.; Fahey, G.C. Protein digestibility evaluations of meat and fish substrates using laboratory, avian, and ileally cannulated dog assays. J. Anim. Sci. 2010, 88, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feiner, G. Meat Products Handbook—Practical Science and Technology; Woodhead Publishing Limited: Cambridge, UK, 2006. [Google Scholar]
- Ruiz, J.; Pèrez-Palacios, T. Ingredients. In Handbook of Fermented Meat and Poultry; Toldra, F., Ed.; Wiley: New York, NY, USA, 2014; pp. 55–67. [Google Scholar]
- Szmańko, T.; Oziembłowski, M.; Dworacka, E.; Dobrowolska, D. Sensory quality and selected physicochemical properties of processed meat products produced in different plants. Acta Sci. Pol. Technol. Aliment. 2006, 5, 93–105. [Google Scholar]
- Halagarda, M.; Kędzior, W.; Pyrzyńska, E. Nutritional value and potential chemical food safety hazards of selected Polish sausages as influenced by their traditionality. Meat Sci. 2018, 139, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Garbowska, B.; Radzymińska, M.; Jakubowska, D. Influence of the origin on selected determinants of the quality of pork meat products. Czech J. Food Sci. 2013, 31, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Halagarda, M.; Kędzior, W.; Pyrzyńska, E. Nutritional volue and potential chemical food safety hazards of selected traditional and conventional pork hams from Poland. J. Food Qual. 2017, 66, 1–10. [Google Scholar] [CrossRef]
- Lucarini, M.; Saccani, G.; D’Evoli, L.; Tufi, S.; Aguzii, A.; Gabrielli, P.; Marletta, L.; Mombardi-Boccia, G. Micronutrients in Italian ham: A survey of traditional products. Food Chem. 2013, 140, 837–842. [Google Scholar] [CrossRef]
- Ledesma, E.; Laca, A.; Rendueles, M.; Díaz, M. Texture, colour and optical characteristics of a meat product depending on smoking time and casing type. LWT Food Sci. Technol. 2016, 65, 164–172. [Google Scholar] [CrossRef]
- Škaljac, S.; Jakanović, M.; Tomović, V.; Ivić, M.; Tasić, T.; Ikonić, P.; Šojić, B.; Džinić, N.; Petrović, L. Influence of smoking in traditional nad industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT Food Sci. Technol. 2018, 87, 158–162. [Google Scholar] [CrossRef]
- Gomez, M.; Lorenzo, J.M. Effect of fat level on physicochemical, volatile compounds and sensory characteristics of dry-ripened “chorizo” from Celta pig breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.R.; Naveena, B.M.; Muthukumar, M.; Vaithiyanathan, S. Colour, myoglobin denaturation and storage stability of raw and cooked mutton chops at different end point cooking temperature. J. Food Sci. Technol. 2011, 51, 970–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EC. European Commission Regulation No. 835/2011 of 19 August 2011 Amending Regulation (EC) No. 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. Off. J. Eur. Union. 2011, L215, 4–8. [Google Scholar]
- PN-A-04018:1975/Az3. Agricultural Food Products. Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN-ISO 1442. Meat and Meat Products—Determination of Moisture Content (Reference Method); Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN-ISO 1444. Meat and Meat Products—Determination of Free Fat Content; Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Specification | Variant of Smoking | Sausage | ||
---|---|---|---|---|
Country | Home | Bieszczady | ||
Hardness 1 (N) | A | 19.48 ± 5.73 | 17.84 ± 4.49 | 27.10 A ± 7.68 |
B | 16.61 ± 2.75 | 14.95 ± 1.54 | 16.85 B ± 1.57 | |
Hardness 2 (N) | A | 17.73 ± 6.70 | 16.48 ± 7.07 | 24.66 A ± 6.64 |
B | 14.66 ± 2.65 | 13.78 ± 1.69 | 15.49 B ± 1.36 | |
Rigidity 5 (N) | A | 6.38 ± 0.80 | 5.95 ± 0.48 | 9.18 A ± 0.82 |
B | 6.75 ± 0.88 | 6.03 ± 0.60 | 6.65 B ± 0.55 | |
Rigidity 8 (N) | A | 11.75 ± 1.53 | 10.68 ± 0.84 | 16.99 A ± 1.32 |
B | 12.88 ± 2.33 | 11.00 ± 1.17 | 12.36 B ± 1.25 | |
Springiness (mm) | A | 6.79 ± 1.03 | 6.86 ± 1.47 | 7.25 ± 1.35 |
B | 6.03 ± 0.27 | 6.71 ± 0.39 | 6.71 ± 0.30 | |
Cohesiveness | A | 0.51 ± 0.05 | 0.51 A ± 0.02 | 0.54 ± 0.03 |
B | 0.48 ± 0.03 | 0.56 B ± 0.03 | 0.56 ± 0.02 | |
Adhesiveness (mJ) | A | 0.26 ± 0.05 | 0.18 ± 0.08 | 0.30 ± 0.04 |
B | 0.24 ± 0.06 | 1.65 ± 0.07 | 0.68 ± 0.09 | |
Resilience | A | 0.20 ± 0.03 | 0.22 A ± 0.02 | 0.23 ± 0.03 |
B | 0.20 ± 0.02 | 0.26 B ± 0.02 | 0.25 ± 0.02 | |
Gumminess (N) | A | 9.19 ± 3.12 | 9.00 ± 3.69 | 14.47 A ± 3.25 |
B | 8.06 ± 1.63 | 8.32 ± 1.09 | 9.39 B ± 0.99 | |
Chewiness (mJ) | A | 67.93 ± 15.60 | 66.43 ± 18.85 | 108.58 A ± 21.76 |
B | 48.84 ± 11.33 | 55.96 ± 9.39 | 63.10 B ± 8.14 |
Specification | Variant of Smoking | Sausage | ||
---|---|---|---|---|
Country | Home | Bieszczady | ||
Water (%) | A | 53.12 A ± 8.64 | 57.08 ± 4.71 | 63.59 ± 2.79 |
B | 62.52 B ± 1.40 | 55.13 ± 2.25 | 63.45 ± 0.64 | |
Protein (%) | A | 15.25 A ± 2.38 | 16.01 ± 1.97 | 17.72 ± 0.93 |
B | 17.19 B ± 0.39 | 15.03 ± 0.66 | 17.48 ± 0.18 | |
Fat (%) | A | 30.03 A ± 5.05 | 25.17 ± 6.27 | 17.47 ± 3.62 |
B | 18.32 B ± 1.73 | 27.85 ± 3.02 | 17.12 ± 0.78 |
Specification | Variant of Smoking | Sausage | ||
---|---|---|---|---|
Country | Home | Bieszczady | ||
L (%) | A | 63.78 ± 4.01 | 66.38 ± 1.92 | 56.57 A ± 2.10 |
B | 63.76 ± 3.22 | 67.10 ± 1.17 | 60.64 B ± 0.79 | |
a | A | 5.00 ± 1.94 | 6.75 ± 1.44 | 11.52 ± 1.30 |
B | 7.45 ± 0.80 | 6.94 ± 0.66 | 11.05 ± 0.78 | |
b | A | 10.85 ± 2.00 | 11.38 ± 1.26 | 10.79 ± 0.38 |
B | 11.59 ± 0.12 | 11.90 ± 0.66 | 11.07 ± 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duma-Kocan, P.; Rudy, M.; Gil, M.; Stanisławczyk, R. The Influence of Temperature Differences in Smoking Chamber and Furnace and Smoking Time on the Quality of Medium-Ground Sausages. Molecules 2020, 25, 5515. https://doi.org/10.3390/molecules25235515
Duma-Kocan P, Rudy M, Gil M, Stanisławczyk R. The Influence of Temperature Differences in Smoking Chamber and Furnace and Smoking Time on the Quality of Medium-Ground Sausages. Molecules. 2020; 25(23):5515. https://doi.org/10.3390/molecules25235515
Chicago/Turabian StyleDuma-Kocan, Paulina, Mariusz Rudy, Marian Gil, and Renata Stanisławczyk. 2020. "The Influence of Temperature Differences in Smoking Chamber and Furnace and Smoking Time on the Quality of Medium-Ground Sausages" Molecules 25, no. 23: 5515. https://doi.org/10.3390/molecules25235515
APA StyleDuma-Kocan, P., Rudy, M., Gil, M., & Stanisławczyk, R. (2020). The Influence of Temperature Differences in Smoking Chamber and Furnace and Smoking Time on the Quality of Medium-Ground Sausages. Molecules, 25(23), 5515. https://doi.org/10.3390/molecules25235515