Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Content Analysis and Statistical Analysis
2.2. Habitat Suitability Zone Map
2.3. Validation of the Habitat Suitability Map of G. glabra
3. Materials and Methods
3.1. Study Area
3.2. Plant Materials
3.3. Chemicals
3.4. Instrumentation
3.5. Isolation and Identification of Liquiritin
3.6. Quantification of Glycyrrhizic Acid, Glabridin, and Liquiritin by HPLC
3.7. In-Situ Soil Analysis
3.8. Dataset Preparation for Habitat Suitability Zones
3.9. Frequency Ratio (FR) Model
3.10. Statistical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayashi, H.; Sudo, H. Economic importance of licorice. Plant Biotechnol. 2009, 26, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wang, L.; Yuan, B.; Liu, Y. The Pharmacological Activities of Licorice. Planta Med. 2015, 81, 1654–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants 2019, 8, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altay, V.; Karahan, F.; Öztürk, M.; Hakeem, K.R.; Ilhan, E.; Erayman, M. Molecular and ecological investigations on the wild populations of Glycyrrhiza L. taxa distributed in the East Mediterranean Area of Turkey. J. Plant Res. 2016, 129, 1021–1032. [Google Scholar] [CrossRef]
- Karahan, F.; Avsar, C.; Ozyigit, I.I.; Berber, I. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats. Biotechnol. Biotechnol. Equip. 2016, 30, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Frommenwiler, D.A.; Maire-Widmer, V.; Upton, R.; Nichols, J.; Heubl, G.; Reich, E. Qualitative and Quantitative Characterization of Two Licorice Root Species (Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch.) by HPTLC, Validated by HPLC and DNA Sequencing. JPC-J. Planar Chromatogr. 2017, 30, 467–473. [Google Scholar] [CrossRef]
- Society of Japanese Pharmacopoeia. The Japanese Pharmacopoeia, 17th ed.; Pharmaceuticals and Medical Devices Agency: Tokyo, Japan, 2016.
- Hayashi, H.; Matsuoka, J.; Honda, G.; Tabata, M.; Segawa, T.; Ogasawara, I.; Kawanishi, F. Cultivation of Turkish Licorice plants and their glycyrrhizin contents. Nat. Med. 1996, 50, 254–257. [Google Scholar]
- Marui, A.; Kotera, A.; Furukawa, Z.; Yasufuku, N.; Omine, K.; Nagano, T.; Tuvshintogtokh, I.M.B. Monitoring the growing environment of wild licorice with analysis of satellite data at a semi-arid area in Mongolia. J. Arid. Land. Stud. 2014, 24, 199–202. [Google Scholar]
- Hayashi, H.; Tamura, S.; Chiba, R.; Fujii, I.; Yoshikawa, N.; Fattokhov, I.; Saidov, M. Field survey of Glycyrrhiza plants in Central Asia (4). Characterization of G. glabra and G. bucharica collected in Tajikistan. Biol. Pharm. Bull. 2016, 39, 1781–1786. [Google Scholar] [CrossRef] [Green Version]
- Kojoma, M.; Hayashi, S.; Shibata, T.; Yamamoto, Y.; Sekizaki, H. Variation of glycyrrhizin and liquiritin contents within a population of 5-year-old licorice (Glycyrrhiza uralensis) plants cultivated under the same conditions. Biol. Pharm. Bull. 2011, 34, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.T.; Xu, B.; Li, M. Relationships between the bioactive compound content and environmental variables in Glycyrrhiza uralensis populations in different habitats of North China. Phyton (B. Aires) 2011, 80, 161–166. [Google Scholar]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Karahan, F.; Ozyigit, I.I.; Saracoglu, I.A.; Yalcin, I.E.; Ozyigit, A.H.; Ilcim, A. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from Eastern Mediterranean region of Turkey. Biol. Trace Elem. Res. 2020, 197, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, S.; Vepraskas, M.J.; Richardson, J.L. Soil redox potential: Importance, field measurements, and observations. Adv. Agron. 2007, 94, 1–54. [Google Scholar] [CrossRef]
- Canham, C.A.; Cavalieri, O.Y.; Setterfield, S.A.; Freestone, F.L.; Hutley, L.B. Effect of elevated magnesium sulfate on two riparian tree species potentially impacted by mine site contamination. Sci. Rep. 2020, 10, 2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laekemariam, F.; Kibret, K.; Shiferaw, H. Potassium (K)-to-magnesium (Mg) ratio, its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of Southern Ethiopia. Agric. Food Secur. 2018, 7, 13. [Google Scholar] [CrossRef]
- Altay, V.; Öztürk, M. Land degradation and halophytic plant diversity of milleyha wetland ecosystem (Samandaǧ-Hatay), Turkey. Pakistan J. Bot. 2012, 44, 37–50. [Google Scholar]
- Hou, J.; Guo, H.; Du, T.; Shao, S.; Zhang, Y. Effect of seedling grade standard on improving the quality of licorice (Glycyrrhiza uralensis F.): Changes in the seven bioactive components and root biomass during two-year growth. Food Sci. Biotechnol. 2018, 27, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, H.; Karami, A.; Hadian, J.; Nejad Ebrahimi, S.; Otto, L.-G. Genetic structure and variation in Iranian licorice (Glycyrrhiza glabra L.) populations based on morphological, phytochemical and simple sequence repeats markers. Ind. Crops Prod. 2020, 145, 112140. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B.; Raper, R. Soil penetrometers and penetrability. In Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 757–760. [Google Scholar]
- General Directorate of meteorology, Turkish Ministry of Agriculture and Forestry. Available online: https://www.mgm.gov.tr/ (accessed on 11 January 2020).
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Nakanishi, T.; Inada, A.; Kambayashi, K.; Yoneda, K. Flavonoid glycosides of the roots of Glycyrrhiza uralensis. Phytochemistry 1985, 24, 339–341. [Google Scholar] [CrossRef]
- Xu, J.; Luo, J.; Kong, L. Simultaneous separation of triterpenoid saponins and flavonoid glycosides from the roots of Glycyrrhiza uralensis Fisch by pH-zone-refining counter-current chromatography. J. Sep. Sci. 2013, 36, 3295–3301. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, G.J.; Miller, J.D. Measurement of soil water content using a simplified impedance measuring technique. J. Agric. Eng. Res. 1996, 63, 153–159. [Google Scholar] [CrossRef]
- Huang, Q.; Akinremi, O.O.; Sri Rajan, R.; Bullock, P. Laboratory and field evaluation of five soil water sensors. Can. J. Soil Sci. 2004, 84, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Devices, D.-T. User Manual for the SM150T-UM-0.f. Soil Moisture Sensor; Delta-T Devices Ltd.: Cambridge, UK, 2016. [Google Scholar]
- Meten, M.; Bhandary, N.P.; Yatabe, R. GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. J. Mt. Sci. 2015, 12, 1355–1372. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Hadian, J.; Saharkhiz, M.J.; Nejad Ebrahimi, S. Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabra populations collected in Iran. Ind. Crops Prod. 2019, 137, 248–259. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). Available online: http://srtm.csi.cgiar.org/ (accessed on 25 March 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Reis, S.; Yalcin, A.; Atasoy, M.; Nisanci, R.; Bayrak, T.; Erduran, M.; Sancar, C.; Ekercin, S. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environ. Earth Sci. 2012, 66, 2063–2073. [Google Scholar] [CrossRef]
- Blahut, J.; van Westen, C.J.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 2010, 119, 36–51. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
Sample Information | Chemical Contents | |||
---|---|---|---|---|
ID a | Root Diameter (mm) | Glycyrrhizic Acid (%) b | Glabridin (%) b | Liquiritin (%) b |
A-1 | 8 | 1.32 ± 0.10 | 0.16 ± 0.01 | 0.50 ± 0.03 |
B-1 | 17 | 1.00 ± 0.20 | 0.15 ± 0.05 | 0.93 ± 0.10 |
B-2 | 16 | 0.65 ± 0.01 | 0.10 ± 0.01 | 0.49 ± 0.01 |
B-3 | 10 | 0.87 ± 0.10 | 0.09 ± 0.01 | 0.70 ± 0.10 |
C-1 | 11 | 0.76 ± 0.20 | 0.04 ± 0.02 | 0.61 ± 0.20 |
C-2 | 13 | 1.24 ± 0.10 | 0.07 ± 0.02 | 1.05 ± 0.10 |
C-3 | 13 | 1.13 ± 0.30 | 0.09 ± 0.03 | 0.67 ± 0.20 |
D-1 | 11 | 0.59 ± 0.10 | 0.03 ± 0.01 | 0.51 ± 0.10 |
D-2 | 10 | 0.72 ± 0.20 | 0.05 ± 0.02 | 0.68 ± 0.10 |
D-3 | 6 | 0.54 ± 0.10 | 0.02 ± 0.01 | 0.58 ± 0.10 |
E-1 | 17 | 2.17 ± 0.60 | 0.24 ± 0.07 | 0.87 ± 0.20 |
E-2 | 17 | 0.89 ± 0.10 | 0.07 ± 0.03 | 0.25 ± 0.03 |
E-3 | 20 | 1.23 ± 0.20 | 0.05 ± 0.01 | 0.43 ± 0.10 |
F-1 | 16 | 1.96 ± 0.50 | 0.10 ± 0.02 | 1.14 ± 0.20 |
F-2 | 11 | 2.10 ± 0.40 | 0.07 ± 0.02 | 1.34 ± 0.30 |
F-3 | 20 | 2.40 ± 0.40 | 0.11 ± 0.02 | 1.85 ± 0.20 |
G-1 | 15 | 1.21 ± 0.40 | 0.09 ± 0.01 | 1.04 ± 0.40 |
G-2 | 12 | 1.37 ± 0.30 | 0.11 ± 0.02 | 0.79 ± 0.10 |
G-3 | 27 | 1.08 ± 0.40 | 0.04 ± 0.01 | 1.19 ± 0.50 |
H-1 | 7 | 0.70 ± 0.20 | 0.09 ± 0.02 | 0.18 ± 0.04 |
H-2 | 10 | 1.68 ± 0.40 | 0.19 ± 0.03 | 0.45 ± 0.10 |
H-3 | 12 | 1.50 ± 0.30 | 0.08 ± 0.01 | 0.44 ± 0.10 |
I-1 | 8 | 0.56 ± 0.30 | 0.18 ± 0.04 | 0.59 ± 0.30 |
I-2 | 16 | 1.25 ± 0.30 | 0.11 ± 0.01 | 1.72 ± 0.30 |
I-3 | 11 | 1.15 ± 0.20 | 0.19 ± 0.04 | 1.34 ± 0.20 |
J-1 | 15 | 0.92 ± 0.20 | 0.10 ± 0.01 | 0.54 ± 0.10 |
J-2 | 14 | 1.40 ± 0.20 | 0.06 ± 0.01 | 1.02 ± 0.10 |
J-3 | 15 | 1.97 ± 0.20 | 0.31 ± 0.04 | 1.30 ± 0.10 |
Variable | MANOVA Analysis (Wilks’ Test) | ANOVA Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Wilks’ Lambda | F Value | Glycyrrhizic Acid Content | Glabridin Content | Liquiritin Content | ||||
R2 | F Value | R2 | F Value | R2 | F Value | |||
Elevation | 0.029 *** | 4.152 | 0.644 ** | 3.616 | 0.364 | 1.146 | 0.628 * | 3.379 |
Curvature | 0.044 *** | 4.881 | 0.569 ** | 3.778 | 0.265 | 1.031 | 0.608 ** | 4.424 |
Hillshade | 0.182 *** | 4.203 | 0.064 | 0.392 | 0.217 | 1.598 | 0.312 | 2.610 |
Aspect | 0.029 *** | 4.152 | 0.644 ** | 3.616 | 0.364 | 1.146 | 0.628 * | 3.379 |
Slope | 0.060 *** | 3.394 | 0.465 | 2.065 | 0.362 | 1.348 | 0.568 * | 2.468 |
Soil bearing capacity | 0.095 *** | 3.861 | 0.537 ** | 4.059 | 0.066 | 0.246 | 0.491* | 3.381 |
Soil pH | 0.337 | 1.788 | 0.207 | 1.150 | 0.276 | 1.675 | 0.371 | 2.597 |
VSMC | 0.033 *** | 4.634 | 0.614 ** | 3.771 | 0.265 | 0.857 | 0.618 ** | 3.487 |
Average annual temperature | 0.409 | 1.870 | 0.292 | 2.373 | 0.223 | 1.647 | 0.319 | 2.694 |
Average annual precipitation | 0.585 ** | 5.666 | 0.000 | 0.010 | 0.162 | 5.022 | 0.105 | 3.047 |
Climate | 0.500 ** | 3.173 | 0.337 | 6.346 | 0.178 | 2.710 | 0.099 | 1.373 |
Location | Longitude | Latitude | Elevation (m) | Average Temperature (°C) a | Average Precipitation (mm) a | Climate Classification b |
---|---|---|---|---|---|---|
A | 36°16′0.27″ E | 36°24′21.59″ N | 75.6 | 20.4 | 900 | Semi-arid–dry sub-humid |
B | 36°16′30.41″ E | 36°24′19.29″ N | 82.5 | 19.9 | 900 | Semi-arid–dry sub-humid |
C | 36°19′5.3″ E | 36°27′54.3″ N | 116.1 | 21.1 | 900 | Semi-arid–dry sub-humid |
D | 36°19′5.25″ E | 36°27′50.27″ N | 125.3 | 21.1 | 900 | Semi-arid–dry sub-humid |
E | 36°26′45.21″ E | 36°26′3.21″ N | 89.4 | 19.4 | 900 | Semi-humid |
F | 36°29′30.94″ E | 36°25′52.03″ N | 88.1 | 19.4 | 900 | Semi-humid |
G | 36°27′44.42″ E | 36°24′1.09″ N | 83.6 | 19.4 | 900 | Semi-humid |
H | 36°15′52.8″ E | 36°8′56.47″ N | 328.0 | 18.3 | 900 | Humid |
I | 36°21′42.68″ E | 36°3′45.51″ N | 198.8 | 19.4 | 1100 | Humid |
J | 36°19′50.46″ E | 36°11′2.27″ N | 164.5 | 19.4 | 1100 | Humid |
Location | Soil Bearing Capacity a | pH | SM150T output (V) | b | VSMC c |
---|---|---|---|---|---|
A | 4.18 ± 0.31 | 6.83 ± 0.35 | 0.15 ± 0.01 | 2.62 ± 0.31 | 0.17 ± 0.01 |
B | 4.50 ± 1.17 | 7.00 ± 0.20 | 0.14 ± 0.05 | 2.47 ± 0.41 | 0.15 ± 0.05 |
C | 4.11 ± 1.39 | 6.53 ± 0.15 | 0.21 ± 0.03 | 3.02 ± 0.23 | 0.22 ± 0.03 |
D | 3.07 ± 0.67 | 6.70 ± 0.27 | 0.19 ± 0.01 | 2.91 ± 0.05 | 0.21 ± 0.01 |
E | 3.86 ± 0.84 | 7.03 ± 0.06 | 0.13 ± 0.03 | 2.40 ± 0.21 | 0.14 ± 0.03 |
F | 2.61 ± 0.58 | 6.93 ± 0.12 | 0.10 ± 0.01 | 2.20 ± 0.06 | 0.12 ± 0.01 |
G | 3.39 ± 1.95 | 7.00 ± 0.01 | 0.11 ± 0.02 | 2.25 ± 0.23 | 0.12 ± 0.03 |
H | 3.61 ± 0.35 | 6.83 ± 0.15 | 0.35 ± 0.12 | 3.83 ± 0.63 | 0.33 ± 0.08 |
I | 3.44 ± 0.39 | 6.93 ± 0.31 | 0.18 ± 0.07 | 2.78 ± 0.52 | 0.19 ± 0.07 |
J | 3.53 ± 0.30 | 6.80 ± 0.27 | 0.19 ± 0.04 | 3.00 ± 0.26 | 0.22 ± 0.03 |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaadi, D.H.M.; Raju, A.; Kusakari, K.; Karahan, F.; Sekeroglu, N.; Watanabe, T. Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey. Molecules 2020, 25, 5529. https://doi.org/10.3390/molecules25235529
Alsaadi DHM, Raju A, Kusakari K, Karahan F, Sekeroglu N, Watanabe T. Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey. Molecules. 2020; 25(23):5529. https://doi.org/10.3390/molecules25235529
Chicago/Turabian StyleAlsaadi, Doaa H. M., Aedla Raju, Ken Kusakari, Faruk Karahan, Nazim Sekeroglu, and Takashi Watanabe. 2020. "Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey" Molecules 25, no. 23: 5529. https://doi.org/10.3390/molecules25235529
APA StyleAlsaadi, D. H. M., Raju, A., Kusakari, K., Karahan, F., Sekeroglu, N., & Watanabe, T. (2020). Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey. Molecules, 25(23), 5529. https://doi.org/10.3390/molecules25235529