New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features
Abstract
:1. Introduction
2. Results and Discussion
2.1. Andean Blueberry Juice Properties
2.2. Physicochemical and Morphological Properties of the Juice Freeze-Dried Powders
2.3. Technological Features of the Juice Freeze-Dried Powders
2.4. Bioactive Characteristics of Andean Blueberry Powders with Different Maltodextrin Additions
3. Materials and Methods
3.1. Materials
3.2. Preparation of Andean Bluebery Juice and Freeze-Drying Formulations
3.3. Freeze Drying
3.4. pH and Soluble Solids Content
3.5. Fourier Transform Infrared Spectroscopy (FTIR)
3.6. Color
3.7. Morphological Analysis
3.8. Moisture Content and Water Activity
3.9. Water-Solubility
3.10. Total Polyhenols Content
3.11. Total Monomeric Anthocyanins Content
3.12. Active Compounds Recovery (%)
3.13. DPPH•-Scavenging Activity
3.14. Flow Properties
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Da Silva, B.V.; Barreira, J.C.; Oliveira, M.B.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 2016, 50, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Song, G.-Q.; Hancock, J.F. Vaccinium. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 197–221. ISBN 978-3-642-16057-8. [Google Scholar]
- Celis, M.E.M.; Franco Tobón, Y.N.; Agudelo, C.; Arango, S.S.; Rojano, B. Andean Berry (Vaccinium meridionale Swartz). In Fruit and Vegetable Phytochemicals: Chemestry and Human Health, 2nd ed.; Yahia, E.M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Volume 2, pp. 869–882. [Google Scholar]
- Garzón, G.A.; Narváez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- González, M.; Samudio, I.; Sequeda-Castañeda, L.G.; Celis, C.; Iglesias, J.; Morales, L. Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. J. Appl. Pharm. Sci. 2017, 7, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Celis, M.E.; Arango-Varela, S.S.; Rojano, B.A. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Rev. Cuba. Plantas Med. 2014, 19, 172–184. [Google Scholar]
- Agudelo, C.D.; Ceballos, N.; Gómez-García, A.; Maldonado-Celis, M.E. Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. J. Berry Res. 2018, 8, 251–261. [Google Scholar] [CrossRef]
- Celli, G.B.; Dibazar, R.; Ghanem, A.; Brooks, M.S.-L. Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Dry. Technol. 2016, 34, 1175–1184. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Nicoletti Telis, V.R.; Martínez-Navarrete, N. Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. In Biopolymer Engineering in Food Processing; Nicoletti Telis, V.R., Ed.; CRC Press: Sound Parkway, NW, USA, 2012. [Google Scholar]
- Delshadi, R.; Bahrami, A.; Tafti, A.G.; Barba, F.J.; Williams, L.L. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends Food Sci. Technol. 2020, 104, 72–83. [Google Scholar] [CrossRef]
- Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules 2018, 23, 1227. [Google Scholar] [CrossRef] [Green Version]
- Aprodu, I.; Milea, Ș.A.; Anghel, R.-M.; Enachi, E.; Barbu, V.; Crăciunescu, O.; Râpeanu, G.; Bahrim, G.E.; Oancea, A.; Stănciuc, N. New Functional Ingredients Based on Microencapsulation of Aqueous Anthocyanin-Rich Extracts Derived from Black Rice (Oryza sativa L.). Molecules 2019, 24, 3389. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, G.; Dirim, S.N. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska-Ciechanowska, A.; Oszmiański, J. The Impact of Maltodextrin and Inulin on the Protection of Natural Antioxidants in Powders Made of Saskatoon Berry Fruit, Juice, and Pomace as Functional Food Ingredients. Molecules 2020, 25, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pudziuvelyte, L.; Marksa, M.; Sosnowska, K.; Winnicka, K.; Morkuniene, R.; Bernatoniene, J. Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules 2020, 25, 2237. [Google Scholar] [CrossRef] [PubMed]
- Fossen, T.; Cabrita, L.; Andersen, O.M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef]
- Franco Tobon, Y.N.; Rojano, B.A.; Arbeláez Alzate, A.F.; Saavedra Morales, D.M.; Celis Maldonado, M.E. Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Arch. Latinoam. Nutr. 2016, 66, 261–271. (In Spanish) [Google Scholar]
- Casati, C.B.; Baeza, R.; Sánchez, V. Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. J. Berry Res. 2019, 9, 431–447. [Google Scholar] [CrossRef] [Green Version]
- Tkacz, K.; Wojdyło, A.; Michalska-Ciechanowska, A.; Turkiewicz, I.P.; Lech, K.; Nowicka, P. Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020, 25, 3801. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. Water Act. Foods 2007, 239–271. [Google Scholar]
- Sarabandi, K.; Peighambardoust, S.H.; Sadeghi Mahoonak, A.R.; Samaei, S.P. Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. J. Food Sci. Technol. 2018, 55, 3098–3109. [Google Scholar] [CrossRef]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Hemmati Kakhki, A. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- González-Ortega, R.; Faieta, M.; Di Mattia, C.D.; Valbonetti, L.; Pittia, P. Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. J. Food Eng. 2020, 285, 110089. [Google Scholar] [CrossRef]
- Alzate-Arbeláez, A.F.; Dorta, E.; López-Alarcón, C.; Cortés, F.B.; Rojano, B.A. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chem. 2019, 294, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT Food Sci. Technol. 2015, 64, 571–577. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Goyanes, S. Food Powder Properties. Ref. Modul. Food Sci. 2017, 1–7. [Google Scholar] [CrossRef]
- Franceschinis, L.; Salvatori, D.M.; Sosa, N.; Schebor, C. Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Dry. Technol. 2014, 32, 197–207. [Google Scholar] [CrossRef]
- Romero-González, J.; Shun Ah-Hen, K.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem. 2020, 313, 126115. [Google Scholar] [CrossRef]
- Garrido Makinistian, F.; Sette, P.; Gallo, L.; Bucalá, V.; Salvatori, D. Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. J. Food Sci. Technol. 2019, 56, 3553–3560. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology (Oxidants and Antioxidants, Part A); Lester Packer, L., Ed.; Academic Press: San Diego, CA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Deladino, L.; Agudelo-Mesa, L.; Martino, M. Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. J. Food Eng. 2014, 124, 158–165. [Google Scholar] [CrossRef]
- Rattes, A.L.R.; Oliveira, W.P. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007, 171, 7–14. [Google Scholar] [CrossRef]
Sample Availability: Samples of the freeze-dried powders are available from the authors. |
Physicochemical Property | Value |
---|---|
Soluble solids content (°Brix) | 13.27 ± 0.05 |
Dry solid content (%) | 11.6 ± 0.3 |
pH | 2.91 ± 0.07 |
Water activity | 0.97 ± 0.01 |
Color coordinates (CIELAB) | L* = 22.7 ± 0.4 |
a* = 22.5 ± 0.4 | |
b* = 7.8 ± 0.5 | |
h = 19.2 ± 1.9 | |
c = 23.2 ± 0.8 | |
Total polyphenol content (mg GAE/L) | 2032.5 ± 41.7 |
Monomeric anthocyanin content (mg cyd-3-glu/L) | 371.5 ± 20.1 |
Antioxidant capacity (mg GAE/ g dw) | 19.1 ± 0.3 |
Maltodextrin Concentration (%) | L* | a* | b* | h | Chroma |
---|---|---|---|---|---|
20 | 47.2 ± 0.8 a | 42.3 ± 0.5 a | 2.6 ± 0.4 a | 3.6 ± 0.5 a | 42.3 ± 0.5 a |
30 | 54.2 ± 0.6 b | 36.6 ± 0.3 b | 1.4 ± 0.1 b | 2.2 ± 0.2 b | 36.6 ± 0.3 b |
40 | 56.7 ± 1.1 c | 35.6 ± 0.6 b | 3.4 ± 0.4 a | 5.5 ± 0.6 c | 35.8 ± 0.6 b |
50 | 52.7 ± 1.7 b | 38.0 ± 2.7 b | 2.9 ± 0.4 a | 4.3 ± 0.7 b | 38.1 ± 2.7 b |
Maltodextrin Concentration (%) | Moisture Content (%) | Water Activity (aw) | Water Solubility (%) |
---|---|---|---|
20 | 6.1 ± 0.4 a | 0.31 ± 0.03 a | 94.6 ± 0.4 a |
30 | 4.3 ± 0.1 b | 0.27 ± 0.01 a | 93.2 ± 0.9 a |
40 | 5.4 ± 0.1 a,b | 0.41 ± 0.05 b | 92.8 ± 0.8 a |
50 | 8.6 ± 0.3 c | 0.52 ± 0.01 c | 91.1 ± 0.5 a |
Maltodextrin Concentration (%) | Bulk Density kg × m−3 | Tapped Density kg × m−3 | Hausner Ratio | Carr Index (%) | Angle of Repose (°) |
---|---|---|---|---|---|
20 | 470 ± 24 a | 545 ± 44 a | 1.2 ± 0.1 a,b | 20.7 ± 2.6 a | 35.4 ± 0.3 a |
30 | 502 ± 20 a | 615 ± 17 b | 1.2 ± 0.1 a | 15.6 ± 0.4 b | 37.0 ± 0.5 a |
40 | 585 ± 35 b | 674 ± 39 c | 1.1 ± 0.1 a,b | 11.6 ± 0.7 c | 36.3 ± 1.1 a |
50 | 595 ± 41 b | 650 ± 43 b,c | 1.1 ± 0.1 b | 6.1 ± 0.2 d | 27.0 ± 0.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estupiñan-Amaya, M.; Fuenmayor, C.A.; López-Córdoba, A. New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features. Molecules 2020, 25, 5635. https://doi.org/10.3390/molecules25235635
Estupiñan-Amaya M, Fuenmayor CA, López-Córdoba A. New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features. Molecules. 2020; 25(23):5635. https://doi.org/10.3390/molecules25235635
Chicago/Turabian StyleEstupiñan-Amaya, Mauren, Carlos Alberto Fuenmayor, and Alex López-Córdoba. 2020. "New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features" Molecules 25, no. 23: 5635. https://doi.org/10.3390/molecules25235635
APA StyleEstupiñan-Amaya, M., Fuenmayor, C. A., & López-Córdoba, A. (2020). New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features. Molecules, 25(23), 5635. https://doi.org/10.3390/molecules25235635