Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far
Abstract
:1. Introduction
2. Glycerol-Properties, Sources and Uses
3. Use of Glycerol in Solid-Liquid Extraction of Polyphenolic Phytochemicals
3.1. Plant Food By-Products
3.2. Medicinal and Aromatic Plants (MAPs)
4. Glycerol-Based Deep Eutectic Solvents (DES) in Polyphenol Extraction
4.1. Glycerol as Hydrogen Bond Donor
4.2. Glycerol vs. Other Hydrogen Bond Donors
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Frontiers Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory: Anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Rev. Int. 2020, 2, 1–53. [Google Scholar] [CrossRef]
- Torres, A.F.; Xu, X.; Nikiforidis, C.V.; Bitter, J.H.; Trindade, L.M. Exploring the treasure of plant molecules with integrated biorefineries. Frontiers Plant Sci. 2019, 10, 478. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [Green Version]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Herrero, M.; Ibañez, E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J. Supercrit. Fluids 2018, 134, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Režek Jambrak, A.; Granato, D.; Montesano, D.; Bursać Kovačević, D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers Nutr. 2020, 7, 1–27. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Inter. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliaro, M.; Rossi, M. Glycerol: Properties and production. In The Future of Glycerol, 2nd ed.; Clark, J.H., Kraus, G.A., Eds.; RCS Green Chemistry Series 8; The Royal Society of Chemistry: Cambridge, UK, 2010; Volum 3, pp. 20–21. [Google Scholar]
- Quispe, C.A.; Coronado, C.J.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Rodrigues, A.; Bordado, J.C.; Santos, R.G. Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals—A technological review for three chemical pathways. Energies 2017, 10, 1817. [Google Scholar] [CrossRef] [Green Version]
- Abrasives Market 2020: Global Industry Analysis by Top Countries Data with Size, Share, Segments, Drivers and Growth Insights to 2026. Available online: https://www.marketwatch.com/press-release/abrasives-market-2020-global-industry-analysis-by-top-countries-data-with-size-share-segments-drivers-and-growth-insights-to-2026-2020-10-23 (accessed on 8 December 2020).
- Grand View Research. Available online: https://www.grandviewresearch.com/press-release/global-glycerol-market (accessed on 9 December 2019).
- Metzger, J.O. Fats and oils as renewable feedstock for chemistry. Eur. J. Lipid Sci. Technol. 2009, 111, 865–876. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- García, J.I.; García-Marín, H.; Mayoral, J.A.; Pérez, P. Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chem. 2010, 12, 426–434. [Google Scholar] [CrossRef]
- Díaz-Álvarez, A.E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Glycerol and derived solvents: New sustainable reaction media for organic synthesis. Chem. Com. 2011, 47, 6208–6227. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Álvarez, A.E.; Francos, J.; Croche, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem. 2014, 1, 51–65. [Google Scholar] [CrossRef]
- García, J.I.; García-Marín, H.; Pires, E. Glycerol based solvents: Synthesis, properties and applications. Green Chem. 2014, 16, 1007–1033. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.C.; Schiele, A.W.; Hampton, S.F. Studies on the optimum concentration of glycerine in the preparation and preservation of ragweed pollen extract. J. Allergy 1955, 26, 429–447. [Google Scholar] [CrossRef]
- Cho, S.-H.; Seo, I.-W.; Choi, J.-D.; Joo, I.-S. Antimicrobial and antioxidant activity of grapefruit and seed extract on fishery products. Korean J. Fish. Aquat. Sci. 1990, 23, 289–296. [Google Scholar]
- Bergeron, C.; Gafner, S.; Batcha, L.L.; Angerhofer, C.K. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J. Agric. Food Chem. 2002, 50, 3967–3970. [Google Scholar] [CrossRef]
- Proniuk, S.; Blanchard, J. Anhydrous Carbopol® polymer gels for the topical delivery of oxygen/water sensitive compounds. Pharmaceut. Develop. Technol. 2002, 7, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Costa, P.C.; Bahia, M.F. Evaluation of functional stability and batch-to-batch reproducibility of a Castanea sativa leaf extract with antioxidant activity. AAPS PharmSciTech 2010, 11, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separ. Purif. Technol. 2014, 128, 89–95. [Google Scholar] [CrossRef]
- Makris, D.P. Green extraction processes for the efficient recovery of bioactive polyphenols from wine industry solid wastes–Recent progress. Curr. Opin. Green Sustain. Chem. 2018, 13, 50–55. [Google Scholar] [CrossRef]
- Blidi, S.; Bikaki, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: Apple waste peels as a case study. Waste Biomass Valor. 2015, 6, 1125–1133. [Google Scholar] [CrossRef]
- Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D.P. A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Ind. Crops Prod. 2015, 77, 535–543. [Google Scholar] [CrossRef]
- Trasanidou, D.; Apostolakis, A.; Makris, D.P. Development of a green process for the preparation of antioxidant and pigment-enriched extracts from winery solid wastes using response surface methodology and kinetics. Chem. Eng. Commun. 2016, 203, 1317–1325. [Google Scholar] [CrossRef]
- Michail, A.; Sigala, P.; Grigorakis, S.; Makris, D.P. Kinetics of ultrasound-assisted polyphenol extraction from spent filter coffee using aqueous glycerol. Chem. Eng. Commun. 2016, 203, 407–413. [Google Scholar] [CrossRef]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 2016, 1, 194–204. [Google Scholar] [CrossRef]
- Makris, D.P.; Passalidi, V.; Kallithraka, S.; Mourtzinos, I. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Prep. Biochem. Biotech. 2016, 46, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Conver. Bioref. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Philippi, K.; Tsamandouras, N.; Grigorakis, S.; Makris, D.P. Ultrasound-assisted green extraction of eggplant peel (Solanum melongena) polyphenols using aqueous mixtures of glycerol and ethanol: Optimisation and kinetics. Environ. Proc. 2016, 3, 369–386. [Google Scholar] [CrossRef]
- Kyriakidou, K.; Mourtzinos, I.; Biliaderis, C.G.; Makris, D.P. Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures. Environments 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinos, I.; Prodromidis, P.; Grigorakis, S.; Makris, D.P.; Biliaderis, C.G.; Moschakis, T. Natural food colorants derived from onion wastes: Application in a yoghurt product. Electrophoresis 2018, 39, 1975–1983. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Aalim, H.; Limwachiranon, J.; Li, L.; Duan, Z.; Ren, G.; Luo, Z. Green recovery of phenolic compounds from rice byproduct (rice bran) using glycerol based on viscosity, conductivity and density. Int. J. Food Sci. Technol. 2019, 54, 1363–1371. [Google Scholar] [CrossRef]
- Aalim, H.; Belwal, T.; Jiang, L.; Huang, H.; Meng, X.; Luo, Z. Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. LWT 2019, 103, 147–154. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. J. Food Measur. Character. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Sungpud, C.; Panpipat, W.; Sae-Yoon, A.; Chaijan, M. Polyphenol extraction from mangosteen (Garcinia mangostana Linn) pericarp by bio-based solvents. Inter. Food Res. J. 2020, 27, 111–120. [Google Scholar]
- Huamán-Castilla, N.L.; Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Pérez-Correa, J.R. Glycerol as alternative co-Solvent for water extraction of polyphenols from Carménère pomace: Hot pressurized liquid extraction and computational chemistry calculations. Biomolecules 2020, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P. Kinetics of ultrasound-assisted flavonoid extraction from agri-food solid wastes using water/glycerol mixtures. Resources 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Mourtzinos, I.; Makris, D.P. Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. Inter. J. Ind. Chem. 2015, 6, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Separ. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Tsiaka, T.; Soteriou, N.; Asimomiti, G.; Spanidi, E.; Natskoulis, P.; Gardikis, K.; Sinanoglou, V.J.; Zoumpoulakis, P. Antioxidant profiles of Vitis vinifera L. and Salvia triloba L. leaves using high-energy extraction methodologies. J. AOAC Int. 2020, 103, 413–421. [Google Scholar] [CrossRef]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Vieira, V.; Calhelha, R.C.; Barros, L.; Coutinho, J.A.; Ferreira, I.C.; Ferreira, O. Insights on the extraction performance of alkanediols and glycerol: Using Juglans regia L. leaves as a source of bioactive compounds. Molecules 2020, 25, 2497. [Google Scholar] [CrossRef]
- Kaplan, M.; Yilmaz, M.M.; Say, R.; Köprü, S.; Karaman, K. Bioactive properties of hydroalcoholic extract from Origanum onites L. as affected by glycerol incorporation. Saudi J. Biol. Sci. 2020, 27, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Grigorakis, S.; Halahlah, A.; Makris, D.P. Hydroglycerolic solvent and ultrasonication pretreatment: A green blend for high-efficiency extraction of Salvia fruticosa polyphenols. Sustainability 2020, 12, 4840. [Google Scholar] [CrossRef]
- Zam, W.; Ali, A.; Husein, F. Extraction of polyphenols from oregano and thyme by maceration using glycerine. Res. J. Pharm. Technol. 2020, 13, 2699–2702. [Google Scholar] [CrossRef]
- Baranauskaitė, J.; Jakštas, V.; Ivanauskas, L.; Kopustinskienė, D.M.; Drakšienė, G.; Masteikova, R.; Bernatonienė, J. Optimization of carvacrol, rosmarinic, oleanolic and ursolic acid extraction from oregano herbs (Origanum onites L.; Origanum vulgare spp. hirtum and Origanum vulgare L.). Nat. Prod. Res. 2016, 30, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Huang, J.; Guo, X.; Xu, T.; Fan, L.; Zhou, X.; Wu, S. Ionic deep eutectic solvents for the extraction and separation of natural products. J. Chrom. A 2019, 1598, 1–19. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotech. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Abbott, A.P.; Cullis, P.M.; Gibson, M.J.; Harris, R.C.; Raven, E. Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 2007, 9, 868–872. [Google Scholar] [CrossRef]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem. 2011, 13, 82–90. [Google Scholar] [CrossRef]
- Leron, R.B.; Soriano, A.N.; Li, M.-H. Densities and refractive indices of the deep eutectic solvents (choline chloride+ ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K. J. Taiwan Inst. Chem. Eng. 2012, 43, 551–557. [Google Scholar] [CrossRef]
- Leron, R.B.; Wong, D.S.H.; Li, M.-H. Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures. Fluid Phase Equil. 2012, 335, 32–38. [Google Scholar] [CrossRef]
- Abbott, A.P.; D’Agostino, C.; Davis, S.J.; Gladden, L.; Mantle, M. Do group 1 metal salts form deep eutectic solvents? Phys. Chem. Chem. Phys. 2016, 18, 25528–25537. [Google Scholar] [CrossRef]
- Bewley, B.R.; Berkaliev, A.; Henriksen, H.; Ball, D.B.; Ott, L.S. Waste glycerol from biodiesel synthesis as a component in deep eutectic solvents. Fuel Proc. Technol. 2015, 138, 419–423. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Hayyan, M.; Alsaadi, M.A.; Akib, S.; Hayyan, A.; Hashim, M.A. Glycerol-based deep eutectic solvents: Physical properties. J. Mol. Liq. 2016, 215, 98–103. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valor. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Dedousi, M.; Mamoudaki, V.; Grigorakis, S.; Makris, D.P. Ultrasound-assisted extraction of polyphenolic antioxidants from olive (Olea europaea) leaves using a novel glycerol/sodium-potassium tartrate low-transition temperature mixture (LTTM). Environments 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef]
- Jancheva, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J. Appl. Res. Med. Arom. Plants 2017, 6, 31–40. [Google Scholar] [CrossRef]
- Slim, Z.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Polyphenol extraction from Origanum dictamnus using low-transition temperature mixtures composed of glycerol and organic salts: Effect of organic anion carbon chain length. Chem. Eng. Commun. 2018, 205, 1494–1506. [Google Scholar] [CrossRef]
- Lakka, A.; Karageorgou, I.; Kaltsa, O.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D. Polyphenol extraction from Humulus lupulus (hop) using a neoteric glycerol/L-alanine deep eutectic solvent: Optimisation, kinetics and the effect of ultrasound-assisted pretreatment. AgriEngineering 2019, 1, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Stefou, I.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes. Clean Technol. Environ. Policy 2019, 21, 1563–1574. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The effect of ultrasonication pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L.(drumstick tree) using a novel bio-based deep eutectic solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Highly efficient extraction of antioxidant polyphenols from Olea europaea leaves using an eco-friendly glycerol/glycine deep eutectic solvent. Waste Biomass Valor. 2018, 9, 1985–1992. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Karageorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur. Food Res. Technol. 2017, 243, 1839–1848. [Google Scholar] [CrossRef]
- Grigorakis, S.; Halahlah, A.; Makris, D.P. Batch stirred-tank green extraction of Salvia fruticosa Mill. polyphenols using newly designed citrate-based deep eutectic solvents and ultrasonication pretreatment. Appl. Sci. 2020, 10, 4774. [Google Scholar] [CrossRef]
- Patsea, M.; Stefou, I.; Grigorakis, S.; Makris, D.P. Screening of natural sodium acetate-based low-transition temperature mixtures (LTTMs) for enhanced extraction of antioxidants and pigments from red vinification solid wastes. Environ. Proc. 2017, 4, 123–135. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Pekel, A.G.; Bilgin, M.; Makris, D.P.; Şahin, S. Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conver. Bioref. 2020, 4, 1–10. [Google Scholar] [CrossRef]
Plant Material | Glycerol Proportion | Extraction Mode | Conditions | Yield in Total Polyphenols (mg GAE g−1) | Reference |
---|---|---|---|---|---|
Olive leaves | 9.3% (w/v) | Stirred-tank | T = 80 °C; t = 241 min; RL/S = 60 mL g−1 | 51.91 | [29] |
Apple peels | 70% (w/v) | Stirred-tank | T = 80 °C; t = 160 min; RL/S = 100 mL g−1 | 16.59 | [31] |
Onion solid wastes | 90% (w/v) | Ultrasound-assisted | T = 50 °C; t = 60 min; RL/S = 90 mL g−1 | 90.07 | [32] |
Red grape pomace | 90% (w/v) | Ultrasound-assisted | T = 45 °C; t = 60 min; RL/S = 90 mL g−1 | 66.70 | [33] |
Coffee brewing residues | 3.6% (w/v) | Ultrasound-assisted | T = 45 °C; t = 175 min; RL/S = 50 mL g−1 | 8.15 | [34] |
Eggplant peels, potato peels, coffee brewing residues | 80% (w/v) | Stirred-tank | T = 80 °C; t = 180 min; RL/S = 100 mL g−1 | [35] | |
Red grape pomace | 20% (w/v) | Stirred-tank | T = 23 °C; t = 180 min, RL/S = 50 mL g−1 | 5.65 | [36] |
Potato peels | 83% (w/v) | Ultrasound-assisted | T = 23 °C; t = 80 min, RL/S = 81 mL g−1 | 8.71 | [37] |
Eggplant peels | 90% (w/v) | Ultrasound-assisted | T = 50 °C; t = 90 min, RL/S = 100 mL g−1 | 13.51 | [38] |
Oak acorn husks | 60% (w/v) | Stirred-tank, addition of 13% (w/v) HP-β-CD 1 | T = 80 °C; t = 180 min, RL/S = 50 mL g−1 | 122.19 | [39] |
Olive leaves | 60% (w/v) | Stirred-tank, addition of 7% (w/v) HP-β-CD 1 | T = 60 °C; t = 180 min, RL/S = 50 mL g−1 | 54.33 | [40] |
Onion solid wastes | 60% (w/v) | Stirred-tank, addition of 13% (w/v) HP-β-CD 1 | T = 80 °C; t = 240 min, RL/S = 50 mL g−1 | 3.13 | [41] |
Rice bran | 19.5% (v/v) | Orbital shaking | T = 67 °C; t = 90 min, RL/S = 33 mL g−1 | 7.09 | [42] |
Rice bran | 15.9% (w/v) | Orbital shaking | T = 90 °C; RL/S = 31.6 mL g−1 | 5.50 | [43] |
Grapefruit peels | 20% (w/v) | Stirred-tank, HVED 3 pretreatment | T = 50 °C; t = 60 min | 19.3 | [44] |
Red grape pomace | 50% (w/v) | Homogenizer-assisted | 10,000 rpm, t = 30 s, 15,000 rpm, t = 30 s RL/S = 22.4 mL g−1 | 21.40 | [45] |
Mangosteen pericarp | 99% (w/w) | Stirred-tank | T = 40 °C; t = 24 h, RL/S = 10 mL g−1 | 4.00 | [46] |
Red grape pomace | 32.5% (w/v) | Pressurized-liquid extraction | T = 150 °C; RL/S = 10 mL g−1 | Nr 4 | [47] |
Plant Material | Glycerol Proportion | Extraction Mode | Conditions | Yield in Total Polyphenols (mg GAE g−1) | Reference |
---|---|---|---|---|---|
Hypericum perforatum | 10% (w/v) | Stirred-tank | T = 70 °C; t = 69 min RL/S = 50 mL g−1 | 89.90 | [49] |
Hypericum triquetrifolium Turra | 10% (w/v) | Stirred-tank | T = 70 °C; t = 73 min RL/S = 50 mL g−1 | 54.83 | [50] |
Artemisia arborescens Artemisia inculta Delile | 90% (w/v) | Stirred-tank | T = 80 °C; t = 160 min RL/S = 100 mL g−1 | 48.45 59.91 | [51] |
Salvia triloba (fruticosa) | 40–75% (v/v) | Ultrasound-assisted Pressurized-liquid | T = 25 °C; t = 88 min RL/S = 40 mL g−1 (UAE) | nr | [52] |
Glycyrrhiza glabra | 85% (w/w) | Ultrasound-assisted | T = 70 °C; t = 20 min RL/S = 50 mL g−1 | nr | [53] |
Juglans regia | 20% (w/w) | Stirred-tank | T = 50 °C; t = 120 min RL/S = 33 mL g−1 | 18.30 | [54] |
Origanum onites | 30% (w/v) | Stirred-tank | T = 45 °C; t = 75 min RL/S = 30 mL g−1 | 59.11 | [55] |
Salvia fruticosa Mill. | 60% (w/v) | Stirred-tank, ultrasonication pretreatment | T = 50 °C; t = 150 min RL/S = 25 mL g−1 | 92.00 | [56] |
Origanum vulgare Thymus vulgaris | 95% (w/w) | Maceration | T = 55 °C; t = 10 days RL/S = 19 mL g−1 | 47.85 33.46 | [57] |
Plant Material | HBA | Extraction Mode | Conditions | Yield in Total Polyphenols (mg GAE g−1) | Reference |
---|---|---|---|---|---|
Various plant food wastes | Sodium acetate Sodium-potassium tartrate Choline chloride | Ultrasound-assisted | T = 80 °C; t = 90 min RL/S = 100 mL g−1 | 1.53–88.03 | [69] |
Olive leaves | Sodium-potassium tartrate | Ultrasound-assisted | T = 73 °C; t = 60 min RL/S = 45 mL g−1 | 26.75 | [70] |
Satureja thymbra | Trisodium citrate dihydrate | Stirred-tank | T = 50 °C; t = 200 min RL/S = 45 mL g−1 | 171.48–186.95 | [71] |
Origanum dictamnus | Sodium propionate Sodium butyrate | Stirred-tank | T = 50 °C; t = 200 min RL/S = 45 - 47 mL g−1 | 64.99–76.79 | [73] |
Humulus lupulus | Glycine | Ultrasound-assisted pretreatment Stirred-tank | T = 80 °C; t = 180 min RL/S = 59 mL g−1 | 118.97 | [74] |
Onion solid wastes | Sodium propionate | Stirred-tank | T = 80 °C; t = 150 min RL/S = 100 mL g−1 | 137.50 | [75] |
Moringa oleifera | Nicotinamide | Ultrasound-assisted pretreatment Stirred-tank | T = 80 °C; t = 180 min RL/S = 100 mL g−1 | 82.87 | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makris, D.P.; Lalas, S. Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules 2020, 25, 5842. https://doi.org/10.3390/molecules25245842
Makris DP, Lalas S. Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules. 2020; 25(24):5842. https://doi.org/10.3390/molecules25245842
Chicago/Turabian StyleMakris, Dimitris P., and Stavros Lalas. 2020. "Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far" Molecules 25, no. 24: 5842. https://doi.org/10.3390/molecules25245842
APA StyleMakris, D. P., & Lalas, S. (2020). Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules, 25(24), 5842. https://doi.org/10.3390/molecules25245842