An Overview on Truffle Aroma and Main Volatile Compounds
Abstract
:1. Introduction
1.1. History
1.2. Cultivation
1.3. Uses
1.4. Tracing Truffles in the Soil and Interactions with Mammals
2. Truffle Aroma Characterization: Black Truffle and White Truffle
2.1. Aroma Profiles of Truffles
2.2. Factors Influencing Truffle Aroma
2.3. Major Truffle Aroma Components
No | Compound Name and Class | Odor Description | Content [%] | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Black Truffles | White Truffles | ||||||||||||
T. mel | T. aest | T. ind | T. mac | T. mes | T. ruf | T. bru | T. mag | T. exc | T. bor | ||||
1 | Sulfur compounds Dimethyl sulfide | Rotten, cabbage | 0.52, 57.0 | 1.04, 0.26 | 8.3 | 2.95, 4.44 | [31,42,52,53,71] | ||||||
2 | bis(Methylthio)methane (=2,4-Dithiapentane) | sulfuric, garlic | 67.33, 83.71, 67.8 | [52,65,71] | |||||||||
3 | Methyl (methylthio)methyl disulfide | 0.05, 0.06 | [52,71] | ||||||||||
4 | Dimethyl disulfide | Cabbage, onion | 0.04, 0.17 | 0.06 | 0.15 | [31,53,71] | |||||||
5 | Dimethyl trisulfide | Rotten food | 0.07, 0.01 | 0.18 | 0.02 | [31,53,71] | |||||||
6 | Sulfinylbismethane | 0.04 | 0.05 | [31] | |||||||||
7 | Methanethiol | Cabbage, vegetal | 0.17 | 0.010 | [53,71] | ||||||||
8 | tris(Methylthio)methane | 0.29 | [71] | ||||||||||
9 | 3-Methyl-4,5-dihydrothiophene | Onion, savory, roast, truffle, garlic, butter | 4.87 | [48] | |||||||||
10 | 2-Methyl-4,5-dihydrothiophene | Aged cheese, rubber | 0.34 | [48] | |||||||||
11 | DMTS = (methyltrisulfanyl)methane | Truffle, onion, garlic | 0.04 | [48] | |||||||||
12 | Methional | Boiled potatoes | 0.12 | [53] | |||||||||
13 | Dimethylsulphoxide | Cheesy, garlic, mushroom | 0.33 | [53] | |||||||||
14 | (E)-1-Methylsulfanylprop-1-ene | Acrid strong garlic-like | 0.2 | 27.0 | 0.3 | 29.6 | [65] | ||||||
15 | 1-Methylsulfanylpropane | Alliaceous creamy leek | 0.1 | 22.1 | 0.4 | [65] | |||||||
16 | Methylsulfanylmethane | 11.7 | 18.9 | 4.3 | 1.3 | 1.2 | 8.2 | 4.5 | 14.6 | 4.9 | [65] | ||
17 | (Z)-1-Methylsulfanylprop-1-ene | Acrid strong garlic-like | 8.0 | 0.2 | 6.7 | [65] | |||||||
18 | (Methyldisulfanyl)methane | 0.2 | 0.2 | 0.1 | 2.8 | 0.1 | [65] | ||||||
19 | 4-Mercapto-4-methyl-2-pentanone | 0.06 | [31] | ||||||||||
20 | Alcohols 1-Octen-3-ol | Mushroom, earthy | 4.04, 0.01,2.0 | 35.2, 1.8, 0.9 | 37.1, 0.2 | 4.7 | 9.6 | 3.1 | 11.2 | 0.09 | 2.4 | 2.51 | [31,42,48,52,53,65] |
21 | 2,6-Dimethyl-2-octanol | 0.26 | [52] | ||||||||||
22 | Z-5-Octen-1-ol | 2.8 | [42] | ||||||||||
23 | 3-Octanol | Earthy, mushroom, herbal | 0.05 | 4.03, 0.11 | 2.1 | [31,42,52] | |||||||
24 | 1-Octanol | Waxy, green, citrus | 0.41 | [52] | |||||||||
25 | 2-Butanol | 0.03 | 0.23, 6.3 | 0.3 | 0.1 | [31,65] | |||||||
26 | 6-Dodecanol | 1.48 | [31] | ||||||||||
27 | Octa-1,5-dien-3-ol | 0.19 | 0.32 | [31] | |||||||||
28 | 1-Hexanol | Alcoholic, pungent, green | 0.07 | 0.51 | [31] | ||||||||
29 | 2-Ethyl-1-hexanol | 0.02 | 1.30 | [31] | |||||||||
30 | Ethanol | 0.06 | [71] | ||||||||||
31 | Isobutyl alcohol | 0.22 | [71] | ||||||||||
32 | 2-Methylbutan-1-ol | Malty | 4.94 | 4.7, 1.4, 3.7 | 0.6 | 3.2 | 0.4 | 3.70 | [31,52,65,71] | ||||
33 | 3-Methyl-1-butanol (Isoamyl alcohol) | Winey, onion, cheese | 41.9 | 13.9, 6.5 | 5.4 | 0.2 | 1.8 | 0.29 | [42,48,53,65] | ||||
34 | 2-Methyl-1-propanol | Winey | 0.31 | 0.59 | [31] | ||||||||
35 | 2,5-Dimethyl-3,4-hexanediol | 0.7 | [42] | ||||||||||
36 | Acids Nonanoic acid | 0.05 | [52] | ||||||||||
37 | Acetic acid | 3.17 | [31] | ||||||||||
38 | 2-Propenoic acid | 1.99 | [31] | ||||||||||
39 | 2-Methylhexanoic acid | 0.08 | 0.09 | [31] | |||||||||
40 | Esters Ethyl acetate | 0.04 | 0.47 | [31] | |||||||||
41 | Ethyl-3-methylbutanoate | Fruity, anise | 0.09 | 0.21 | [31,35] | ||||||||
42 | Butyl-2-methylbutanoate | 0.04 | [31] | ||||||||||
43 | 2-Methylpropyl 2-methylbutanoate | 0.29 | [31] | ||||||||||
44 | 2-Methylpropyl-3-methylbutanoate | 0.03 | [31] | ||||||||||
45 | 3-Methylbutyl-2-methylpropanoate | 0.27 | [31] | ||||||||||
46 | 2-Methylbutyl-2-methylbutanoate | 2.49 | [31] | ||||||||||
47 | Pentyl-3-methylbutanoate | 0.29 | [31] | ||||||||||
48 | sec-Butylformate | 1.80 | [42] | ||||||||||
49 | Ethyl 3-methylbutyrate | Fruit, anise | 0.03 | [35,42,53] | |||||||||
50 | Butan-2-yl formate | 15.70 | 11.40 | 0.20 | 2.20 | 7.00 | [65] | ||||||
51 | 2-Methylpropyl formate | 1.00 | 1.40 | 0.90 | [65] | ||||||||
52 | Aldehydes 2-Octenal | Green, citrus, fatty | 1.87 | 0.27, 8.27 | 0.13, 0.05 | [31,35,52,71] | |||||||
53 | Acetaldehyde | 0.07 | 0.28 | 0.12 | [31,71] | ||||||||
54 | Nonanal | Waxy, aldehydic, fatty | 0.12 | 1.16 | 0.07, 0.03 | [31,35,52,71] | |||||||
55 | Propanal | Vegetable, green | 0.24 | 0.89 | [31,71] | ||||||||
56 | 2-Methyl-butanal | Cocoa, almond-like | 19.13, 8.4 | 0.64, 0.1 | 2.0 | 0.4 | 0.8 | 0.57, 0.1 | [31,42,65,71] | ||||
57 | 3-Methyl-butanal | Green, nutty, cocoa | 38.31, 6.5 | 7.56, 1.2 | 3.2, 2.8 | 1.6 | 0.6 | 2.15, 1.5 | 0.8 | 0.37 | [31,42,48,65,71] | ||
58 | 2-Butenal | Green, vegetable | 3.45 | 7.90 | [31,35] | ||||||||
59 | Hexanal | Leafy, fruity, sweaty | 5.93 | 17.63 | 0.074 | [31,35,71] | |||||||
60 | 2-Methyl-2-butenal | Fruity, almond, nutty | 1.22 | 1.35 | [31,35] | ||||||||
61 | Heptanal | 0.16 | 5.36 | 0.05 | [31,71] | ||||||||
62 | Octanal | Waxy, orange, peel | 0.86 | 0.70 | 0.03 | [31,42,71] | |||||||
63 | 2-Heptenal | Fresh, fatty, green | 0.35 | 2.16 | [31,35] | ||||||||
64 | Decanal | 1.15 | 0.06 | [31,71] | |||||||||
65 | 2,4-Nonadienal | 0.11 | 0.24 | [31] | |||||||||
66 | Dodecanal | 1.71 | [31] | ||||||||||
67 | 2,4-Decadienal | 0.14 | [31] | ||||||||||
68 | Ketones 3-Hydroxy-2-butanone | Butter, cheese, caramel | 7.58 | 0.001 | [48,52] | ||||||||
69 | 2-Octanone | Earthy, herbal | 0.07 | [35,52] | |||||||||
70 | 2-Nonanone | 0.37, 0.01 | [52,71] | ||||||||||
71 | 2-Decanone | 0.32 | [52] | ||||||||||
72 | Undecanone | 0.05 | 0.18, 0.62 | 0.77 | [52] | ||||||||
73 | 2-Butanone | 1.35, 1.3 | 2.2, 38.2, 53.3 | 1.6, 0.3 | 0.2 | 0.3 | 0.8 | 0.6 | 0.56 | 0.4 | [42,52,65,71] | ||
74 | 3-Octanone | Herbal, lavender, mushroom | 0.20, 4.2 | 1.7, 0.38, 2.6 | 4.6, 0.2 | 7.3 | 4.2 | 5.3 | 8.8 | 0.05, 0.3 | 2.0 | 8.29 | [31,42,48,52,65,71] |
75 | 2-Propanone | 0.09 | 0.57 | [31] | |||||||||
76 | 3-Penten-2-one | 0.44 | [31] | ||||||||||
77 | 5-Methyl-2-heptanone | 0.21 | [31] | ||||||||||
78 | 2,3-Octanedione | 0.06 | 0.06 | [31] | |||||||||
79 | 3-Hydroxy-2-butanone | 0.06 | [31] | ||||||||||
80 | 3-Octen-2-one | 0.37 | 0.015 | [31,71] | |||||||||
81 | 1-Octen-3-one | Mushroom, earthy, musty | 0.03 | 0.70 | [35,42,53] | ||||||||
82 | Aromatic compounds Benzeneacetaldehyde | Honey, sweet, floral | 0.27 | 0.19, 1.85 | 1.10 | 0.11, 0.18 | [31,35,42,52,71] | ||||||
83 | 1-Methoxy-3-methylbenzene | Narcissus | 2.29, 4.2 | 3.7 | 44.50 | 10.60 | 69.5 | 17.4 | 28.3 | 9.05, 0.3 | 37.9 | [31,52,65] | |
84 | Bis(2-Methylpropyl) ester 1,2-Benzenedicarboxylic acid | 1.887 | 0.81 | [52] | |||||||||
85 | Dibutyl phthalate | 0.29 | 0.25 | [52] | |||||||||
86 | Ethylbenzene | 0.66 | [52] | ||||||||||
87 | 1,4-Dimethylbenzene | 7.19, 0.23 | [31,52] | ||||||||||
88 | 1-Ethyl-2-methyl-benzene | 0.24 | [52] | ||||||||||
89 | Phenylethyl alcohol | Floral, yeast, rose | 0.19 | 0.70, 3.82 | 0.002 | [31,48,52] | |||||||
90 | 2,4-Dimethylphenol | 0.93 | [52] | ||||||||||
91 | 1-Methyl-3-(1-methylethyl)benzene | 0.68 | [52] | ||||||||||
92 | Acetophenone | 1.07 | [52] | ||||||||||
93 | Ethylbenzene | 0.33 | [31] | ||||||||||
94 | 1,3-Dimethylbenzene | 0.11 | [31] | ||||||||||
95 | 1,2,4-Trimethylbenzene | 0.07 | 0.20 | [31] | |||||||||
96 | Methoxybenzene | 0.83 | [31] | ||||||||||
97 | 2-(1-Methylethyl)phenol | 0.19 | [31] | ||||||||||
98 | Benzaldehyde | Sweet, bitter, almond | 1.44 | 6.94 | 0.06 | [31,35,71] | |||||||
99 | 4-Hydroxycroman | 0.38 | [31] | ||||||||||
100 | 1,2-Dimethoxybenzene | 2.66 | [31] | ||||||||||
101 | 1,3-Dimethoxybenzene | 0.15 | [31] | ||||||||||
102 | Naphtalene | 0.04 | 0.71 | [31] | |||||||||
103 | 2,5-Dimethoxytoluene | 0.17 | [31] | ||||||||||
104 | 3,4-Dimethoxytoluene | 0.12 | [31] | ||||||||||
105 | 1-Methoxy-4-(1-propenyl)-benzene | 0.04 | [31] | ||||||||||
106 | 2-Methoxy-4-ethyl-6-methylphenol | 0.03 | [31] | ||||||||||
107 | 2,6-Bis(1,1-Dimethylethyl)-4-methylphenol | 0.59 | 3.74 | [31] | |||||||||
108 | p-Cresol | Phenolic/leather | 0.03, 0.02 | [31,35,53] | |||||||||
109 | α-Ethylidene-phenylacetaldehyde | 0.18 | 0.60 | [31] | |||||||||
110 | Phenol | 1.37 | [31] | ||||||||||
111 | 1,2-Dimethoxy-4-(2-propenyl)benzene | 0.16 | [31] | ||||||||||
112 | 1-Methyl-4-(phenylmethyl)benzene | 0.07 | [31] | ||||||||||
113 | p-Methyl anisole | 0.15 | [71] | ||||||||||
114 | m-Anisole | 7.1 | 0.8, 1.4 | 0.80 | 0.20 | 3.40 | 0.70 | [42,65] | |||||
115 | 3-Ethyl-5-methylphenol | Leather | 0.02 | [35,42,53] | |||||||||
116 | 1,4-Dimethoxybenzene | Sweet green hay newly mown hay | 0.10 | 0.10 | 2.70 | 0.90 | 0.70 | 12.10 | 0.10 | 2.80 | [65] | ||
117 | 1,4-Dimethoxy-2-methylbenzene | 0.10 | 1.20 | 1.60 | 7.80 | 0.10 | 1.40 | 0.10 | [65] | ||||
118 | Furans and Furanones 2-Acetyl-5-methylfuran | 0.57, 0.27 | [52,71] | ||||||||||
119 | 2-Pentylfuran | Fruity, green, earthy | 0.07 | 0.35 | 0.05 | [31,35,71] | |||||||
120 | 2,3-Dihydro-4-methylfuran | 0.08 | [31] | ||||||||||
121 | 2-Furancarboxaldehyde | 0.18 | [31] | ||||||||||
122 | 3-Butyldihydro-2(3H)-furanone | 0.14 | [52] | ||||||||||
123 | 2(3H)-Dihydrofuranone | 0.25 | 4.49 | [31] | |||||||||
124 | Alkanes and Alkenes Decane | 0.21 | [52] | ||||||||||
125 | Dodecane | 0.08 | [52] | ||||||||||
126 | 2-Methylbutane | 3.30 | [42] | ||||||||||
127 | Octylcyclopropane | 2.20 | [42] | ||||||||||
128 | Undec-1-ene | 0.10 | 0.40 | 2.90 | 1.80 | 1.80 | [65] | ||||||
129 | Terpenes Camphor | 0.07 | [52] | ||||||||||
130 | Limonene | Citrus, orange, fresh, sweet | 0.16 | [35,71] | |||||||||
131 | p-Cymene | 0.008 | [71] | ||||||||||
132 | 2-Methylisoborneol | Mould, earth | 0.02 | [35,53] | |||||||||
133 | Others 3-Methyl-1H-pirazol | 0.07 | [31] | ||||||||||
134 | 3-Ethyl-4,5-dihydro-1H-pyrazole | 0.13 | [31] | ||||||||||
135 | 2-Methylbutanenitrile | 0.10 | 21.90 | [65] | |||||||||
136 | 2-Nitropentane | 3.90 | [65] | ||||||||||
137 | 2-Bromo-2-methylbutane | 2.30 | [65] |
3. Analytical Methods for the Determination of VOC in Truffles
3.1. Gas Chromatography Methods for the Analysis of VOC in Truffles
3.1.1. Sample Preparation Techniques
Static Headspace Extraction for VOC Extraction in Truffles
Purge-and-Trap VOC Collection Technique
HS-Solid Phase Microextraction (HS-SPME) Technique
Solvent-Assisted Flavor Evaporation (SAFE) Technique
3.1.2. Gas Chromatography (GC) Separation
3.1.3. GC Detecting System in Truffles Analysis
GC-Flame Ionization Detector (GC-FID)
GC-Mass Spectrometry (GC-MS)
Gas Chromatography–Olfactometry (GC–O)
3.2. Analysis of VOC from Truffles Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)
3.3. Electronic Nose (EN) Sensing in the VOC Analysis of Truffles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Patel, S. Food, health and agricultural importance of truffles: A review of current scientific literature. Curr. Trends Biotechnol. Pharm. 2012, 6, 15–27. [Google Scholar]
- Zambonelli, A.; Iotti, M.; Hall, I. Current status of truffle cultivation: Recent results and future perspectives. IJM 2015, 44, 31–40. [Google Scholar]
- Payen, T.; Murat, C.; Bonito, G. Truffle phylogenomics: New insights into truffle evolution and truffle life cycle. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 70, pp. 211–234. [Google Scholar]
- Berch, S.M. Truffle cultivation and commercially harvested native truffles. In Proceedings of the International Symposium on Forest Mushroom, Korea Forest Research Institute, Seoul, Korea, 6 August 2013; pp. 85–97. [Google Scholar]
- Doménech, S.R.; Barreda, S.G. Black truffle cultivation: A global reality. For. Syst. 2014, 23, 317–328. [Google Scholar]
- Shavit, E. The history of desert truffle use. In Desert Truffles; Springer: Berlin/Heidelberg, Germany, 2014; pp. 217–241. [Google Scholar]
- Daba, G.M.; Elkhateeb, W.A.; Wen, T.-C.; Thomas, P.W. The Continuous Story of Truffle-Plant Interaction. In Microbiome in Plant Health and Disease; Springer: Berlin/Heidelberg, Germany, 2019; pp. 375–383. [Google Scholar]
- Rosa-Gruszecka, A.; Hilszczańska, D.; Gil, W.; Kosel, B. Truffle renaissance in Poland–history, present and prospects. J. Ethnobiol. Ethnomed. 2017, 13, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toussaint-Samat, M. A History of Food; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Nowak, Z. The Men Who Planted Trees: How the Truffle Saved Provence. Gastron. J. Food Cult. 2015, 15, 73–76. [Google Scholar] [CrossRef]
- Lefevre, C.; Hall, I. The status of truffle cultivation: A global perspective. In Proceedings of the ISHS Acta Horticulturae 556: V International Congress on Hazelnut, Corvallis, OR, USA, 27 August 2000; pp. 513–520. [Google Scholar]
- Hall, I.R.; Yun, W.; Amicucci, A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003, 21, 433–438. [Google Scholar] [CrossRef]
- Zambonelli, A.; Iotti, M.; Murat, C. True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry; Springer: Berlin/Heidelberg, Germany, 2016; Volume 47. [Google Scholar]
- Bonet, J.A.; Oliach, D.; Fischer, C.; Olivera, A.; Martinez de Aragon, J.; Colinas, C. Cultivation methods of the black truffle, the most profitable mediterranean non-wood forest product; a state of the art review. In Proceedings of the European Forest Institute Proceedings, Palencia, Spain, 26–27 October 2007. [Google Scholar]
- Lee, H.; Nam, K.; Zahra, Z.; Farooqi, M.Q.U. Potentials of truffles in nutritional and medicinal applications: A review. Fungal Biol. Biotechnol. 2020, 7, 1–17. [Google Scholar] [CrossRef]
- Üstün, N.; Bulam, S.; Peksen, A. Biochemical properties, biological activities and usage of truffles. In Proceedings of the Conference: International Congress on Engineering and Life Science, Kastamonu, Turkey, 26–29 April 2018; pp. 26–29. [Google Scholar]
- Khalifa, S.A.; Farag, M.A.; Yosri, N.; Sabir, J.S.; Saeed, A.; Al-Mousawi, S.M.; Taha, W.; Musharraf, S.G.; Patel, S.; El-Seedi, H.R. Truffles: From Islamic culture to chemistry, pharmacology, and food trends in recent times. Trends Food Sci. Technol. 2019, 91, 193–218. [Google Scholar] [CrossRef]
- Gajos, M.; Ryszka, F.; Geistlinger, J. The therapeutic potential of truffle fungi: A patent survey. Acta Mycol. 2014, 49, 305–318. [Google Scholar] [CrossRef]
- Talou, T.; Gaset, A.; Delmas, M.; Kulifaj, M.; Montant, C. Dimethyl sulphide: The secret for black truffle hunting by animals? Mycol. Res. 1990, 94, 277–278. [Google Scholar] [CrossRef]
- Maser, C.; Claridge, A.W.; Trappe, J.M. Trees, Truffles, and Beasts: How Forests Function; Rutgers University Press: New Brunswick, NJ, USA, 2008. [Google Scholar]
- Trappe, J.M.; Claridge, A.W. The hidden life of truffles. Sci. Am. 2010, 302, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Splivallo, R.; Ottonello, S.; Mello, A.; Karlovsky, P. Truffle volatiles: From chemical ecology to aroma biosynthesis. New Phytol. 2011, 189, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Claus, R.; Hoppen, H.; Karg, H. The secret of truffles: A steroidal pheromone? Experientia 1981, 37, 1178–1179. [Google Scholar] [CrossRef]
- Gao, J.-M.; Zhang, A.-L.; Chen, H.; Liu, J.-K. Molecular species of ceramides from the ascomycete truffle Tuber indicum. Chem. Phys. Lipids 2004, 131, 205–213. [Google Scholar] [CrossRef]
- March, R.E.; Richards, D.S.; Ryan, R.W. Volatile compounds from six species of truffle–head-space analysis and vapor analysis at high mass resolution. Int. J. Mass Spectrom. 2006, 249, 60–67. [Google Scholar] [CrossRef]
- Zhang, L.-f.; Yang, Z.L.; Song, D. A phylogenetic study of commercial Chinese truffles and their allies: Taxonomic implications. FEMS Microbiol. Lett. 2005, 245, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M.S. Potential health benefits of natural products derived from truffles: A review. Trends Food Sci. Technol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Vahdatzadeh, M.; Splivallo, R. Improving truffle mycelium flavour through strain selection targeting volatiles of the Ehrlich pathway. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Xiao, D.-R.; Liu, R.-S.; He, L.; Li, H.-M.; Tang, Y.-L.; Liang, X.-H.; Chen, T.; Tang, Y.-J. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation. Sci. Rep. 2015, 5, 17120. [Google Scholar] [CrossRef] [Green Version]
- Bellesia, F.; Pinetti, A.; Bianchi, A.; Tirillini, B. The volatile organic compounds of black truffle (Tuber melanosporum Vitt.) from middle Italy. Flavour Frag. J. 1998, 13, 56–58. [Google Scholar] [CrossRef]
- Dıaz, P.; Ibáñez, E.; Senorans, F.; Reglero, G. Truffle aroma characterization by headspace solid-phase microextraction. J. Chromatogr. A 2003, 1017, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, G.; Marino, R.; D’Auria, M.; Cerone, G.; Rana, G.L. Determination of volatile organic compounds from truffles via SPME-GC-MS. J. Chromatogr. Sci. 2004, 42, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Gioacchini, A.M.; Menotta, M.; Bertini, L.; Rossi, I.; Zeppa, S.; Zambonelli, A.; Piccoli, G.; Stocchi, V. Solid-phase microextraction gas chromatography/mass spectrometry: A new method for species identification of truffles. Rapid Commun. Mass Spectrom. 2005, 19, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Splivallo, R.; Bossi, S.; Maffei, M.; Bonfante, P. Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 2007, 68, 2584–2598. [Google Scholar] [CrossRef]
- Feng, T.; Shui, M.; Song, S.; Zhuang, H.; Sun, M.; Yao, L. Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef] [Green Version]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef] [Green Version]
- Bellesia, F.; Pinetti, A.; Tirillini, B.; Bianchi, A. Temperature-dependent evolution of volatile organic compounds in Tuber borchii from Italy. Flavour Frag. J. 2001, 16, 1–6. [Google Scholar] [CrossRef]
- Splivallo, R.; Ebeler, S.E. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl. Microbiol. Biotechnol. 2015, 99, 2583–2592. [Google Scholar] [CrossRef]
- Shimokawa, T.; Kinoshita, A.; Kusumoto, N.; Nakano, S.; Nakamura, N.; Yamanaka, T. Component features, odor-active volatiles, and acute oral toxicity of novel white-colored truffle Tuber japonicum native to Japan. Food Sci. Nutr. 2020, 8, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Molinier, V.; Murat, C.; Frochot, H.; Wipf, D.; Splivallo, R. Fine-scale spatial genetic structure analysis of the black truffle T uber aestivum and its link to aroma variability. Environ. Microbial. 2015, 17, 3039–3050. [Google Scholar] [CrossRef]
- Wang, S.; Marcone, M.F. The biochemistry and biological properties of the world’s most expensive underground edible mushroom: Truffles. Food Res. Int. 2011, 44, 2567–2581. [Google Scholar] [CrossRef]
- Culleré, L.; Ferreira, V.; Venturini, M.E.; Marco, P.; Blanco, D. Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles. Food Chem. 2013, 141, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Splivallo, R.; Culleré, L. The smell of truffles: From aroma biosynthesis to product quality. In True Truffle (Tuber spp.) in the World; Springer: Berlin/Heidelberg, Germany, 2016; pp. 393–407. [Google Scholar]
- Büntgen, U.; Bagi, I.; Fekete, O.; Molinier, V.; Peter, M.; Splivallo, R.; Vahdatzadeh, M.; Richard, F.; Murat, C.; Tegel, W. New insights into the complex relationship between weight and maturity of Burgundy truffles (Tuber aestivum). PLoS ONE 2017, 12, e0170375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mello, A.; Murat, C.; Bonfante, P. Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8. [Google Scholar] [CrossRef]
- Vita, F.; Taiti, C.; Pompeiano, A.; Bazihizina, N.; Lucarotti, V.; Mancuso, S.; Alpi, A. Volatile organic compounds in truffle (Tuber magnatum Pico): Comparison of samples from different regions of Italy and from different seasons. Sci. Rep. 2015, 5, 12629. [Google Scholar] [CrossRef] [Green Version]
- Vahdatzadeh, M.; Deveau, A.; Splivallo, R. The role of the microbiome of truffles in aroma formation: A meta-analysis approach. App. Environ. Microbial. 2015, 81, 6946–6952. [Google Scholar] [CrossRef] [Green Version]
- Splivallo, R.; Deveau, A.; Valdez, N.; Kirchhoff, N.; Frey-Klett, P.; Karlovsky, P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ. Microbiol. 2015, 17, 2647–2660. [Google Scholar] [CrossRef]
- Splivallo, R.; Valdez, N.; Kirchhoff, N.; Ona, M.C.; Schmidt, J.P.; Feussner, I.; Karlovsky, P. Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol. 2012, 194, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Boyce, M.; White, J.; Hudson, D.; Malajczuk, N.; Bennett, I. Characterisation of Tuber melanosporum (Perigord Black Truffle) of French and Australian Origin Using Solid-Phase. Int. J. Chromatogr. Sep. Tech. 2018, 10. [Google Scholar] [CrossRef]
- Pennazza, G.; Fanali, C.; Santonico, M.; Dugo, L.; Cucchiarini, L.; Dachà, M.; D’Amico, A.; Costa, R.; Dugo, P.; Mondello, L. Electronic nose and GC–MS analysis of volatile compounds in Tuber magnatum Pico: Evaluation of different storage conditions. Food Chem. 2013, 136, 668–674. [Google Scholar] [CrossRef]
- Torregiani, E.; Lorier, S.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Comparative analysis of the volatile profile of 20 commercial samples of truffles, truffle sauces, and truffle-flavored oils by using HS-SPME-GC-MS. Food Anal. Methods 2017, 10, 1857–1869. [Google Scholar] [CrossRef]
- Culleré, L.; Ferreira, V.; Venturini, M.E.; Marco, P.; Blanco, D. Chemical and sensory effects of the freezing process on the aroma profile of black truffles (Tuber melanosporum). Food Chem. 2013, 136, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falasconi, M.; Pardo, M.; Sberveglieri, G.; Battistutta, F.; Piloni, M.; Zironi, R. Study of white truffle aging with SPME-GC-MS and the Pico2-electronic nose. Sens. Actuators B Chem. 2005, 106, 88–94. [Google Scholar] [CrossRef]
- Vahdatzadeh, M.; Deveau, A.; Splivallo, R. Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiol. 2019, 84, 103251. [Google Scholar] [CrossRef]
- Šiškovič, N.; Strojnik, L.; Grebenc, T.; Vidrih, R.; Ogrinc, N. Differentiation between species and regional origin of fresh and freeze-dried truffles according to their volatile profiles. Food Control 2020, 107698. [Google Scholar] [CrossRef]
- Marco, P.; Campo, E.; Oria, R.; Blanco, D.; Venturini, M. Effect of lyophilisation in the black truffle (Tuber melanosporum) aroma: A comparison with other long-term preservation treatments (freezing and sterilization). In Proceedings of the VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues 1194, Murcia, Spain, 21–24 June 2016; pp. 831–838. [Google Scholar]
- Saltarelli, R.; Ceccaroli, P.; Cesari, P.; Barbieri, E.; Stocchi, V. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem. 2008, 109, 8–16. [Google Scholar] [CrossRef]
- Reale, A.; Sorrentino, E.; Iacumin, L.; Tremonte, P.; Manzano, M.; Maiuro, L.; Comi, G.; Coppola, R.; Succi, M. Irradiation treatments to improve the shelf life of fresh black truffles (truffles preservation by gamma-rays). J. Food Sci. 2009, 74, M196–M200. [Google Scholar] [CrossRef]
- Rivera, C.S.; Blanco, D.; Marco, P.; Oria, R.; Venturini, M.E. Effects of electron-beam irradiation on the shelf life, microbial populations and sensory characteristics of summer truffles (Tuber aestivum) packaged under modified atmospheres. Food Microbiol. 2011, 28, 141–148. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C. Effects of combining electron-beam or gamma irradiation treatments with further storage under modified atmospheres on the bioactive compounds of Tuber melanosporum truffles. Postharvest Biol. Technol. 2019, 155, 149–155. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; García-Barreda, S.; Sánchez, S.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C.; Marco, P. Effects of gamma irradiation on the shelf-life and bioactive compounds of Tuber aestivum truffles packaged in passive modified atmosphere. Int. J. Food Microbiol. 2020, 332, 108774. [Google Scholar] [CrossRef]
- Savini, S.; Longo, E.; Servili, A.; Murolo, S.; Mozzon, M.; Romanazzi, G.; Boselli, E. Hypobaric Packaging Prolongs the Shelf Life of Refrigerated Black Truffles (Tuber melanosporum). Molecules 2020, 25, 3837. [Google Scholar] [CrossRef] [PubMed]
- Spanier, A.; Shahidi, F.; Parliment, T.; Mussinan, C.; Ho, C.-T.; Contis, E.T.; Talou, T.; Doumenc-Faure, M.; Gaset, A. Flavor profiling of 12 edible European truffles. In Food Flavors and Chemistry; The Royal Society of Chemistry: London, UK, 2001; pp. 274–280. [Google Scholar]
- Strojnik, L.; Grebenc, T.; Ogrinc, N. Species and geographic variability in truffle aromas. Food Chem. Toxicol. 2020, 111434. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y. Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS. Nat. Prod. Res. 2017, 31, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, H.; Sun, B.; Mao, X.; Zhang, Y.; Zhou, Y. Comparative analysis of volatile composition in Chinese truffles via GC× GC/HR-TOF/MS and electronic nose. Int. J. Mol. Sci. 2016, 17, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gioacchini, A.M.; Menotta, M.; Guescini, M.; Saltarelli, R.; Ceccaroli, P.; Amicucci, A.; Barbieri, E.; Giomaro, G.; Stocchi, V. Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Minute Res. Mass Spectrom. 2008, 22, 3147–3153. [Google Scholar] [CrossRef]
- Zeppa, S.; Gioacchini, A.M.; Guidi, C.; Guescini, M.; Pierleoni, R.; Zambonelli, A.; Stocchi, V. Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 199–205. [Google Scholar] [CrossRef]
- Kamle, M.; Bar, E.; Lewinsohn, D.; Shavit, E.; Roth-Bejerano, N.; Kagan-Zur, V.; Barak, Z.e.; Guy, O.; Zaady, E.; Lewinsohn, E. Characterization of morphology, volatile profiles, and molecular markers in edible desert truffles from the Negev Desert. J. Agric. Food Chem. 2017, 65, 2977–2983. [Google Scholar] [CrossRef]
- Costa, R.; Fanali, C.; Pennazza, G.; Tedone, L.; Dugo, L.; Santonico, M.; Sciarrone, D.; Cacciola, F.; Cucchiarini, L.; Dachà, M. Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses. LWT-Food Sci. Technol. 2015, 60, 905–913. [Google Scholar] [CrossRef]
- Savini, S.; Loizzo, M.R.; Tundis, R.; Mozzon, M.; Foligni, R.; Longo, E.; Morozova, K.; Scampicchio, M.; Martin-Vertedor, D.; Boselli, E. Fresh refrigerated Tuber melanosporum truffle: Effect of the storage conditions on the antioxidant profile, antioxidant activity and volatile profile. Eur. Food Res. Technol. 2017, 243, 2255–2263. [Google Scholar] [CrossRef]
- Culleré, L.; Ferreira, V.; Chevret, B.; Venturini, M.E.; Sánchez-Gimeno, A.C.; Blanco, D. Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry. Food Chem. 2010, 122, 300–306. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.-S.; Li, D.-C.; Li, H.-M.; Tang, Y.-J. Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatography–olfactometry in combination with aroma reconstitution and omission test. Appl. Microbiol. Biotechnol. 2012, 94, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Stephens, R.B.; Trowbridge, A.M.; Ouimette, A.P.; Knighton, W.B.; Hobbie, E.A.; Stoy, P.C.; Rowe, R.J. Signaling from below: Rodents select for deeper fruiting truffles with stronger volatile emissions. Ecology 2020, 101, e02964. [Google Scholar] [CrossRef] [PubMed]
- Vita, F.; Giuntoli, B.; Bertolini, E.; Taiti, C.; Marone, E.; D’Ambrosio, C.; Trovato, E.; Sciarrone, D.; Zoccali, M.; Balestrini, R. Tuber omics: A molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments. BMC Genom. 2020, 21, 1–25. [Google Scholar] [CrossRef]
- Vita, F.; Franchina, F.A.; Taiti, C.; Locato, V.; Pennazza, G.; Santonico, M.; Purcaro, G.; De Gara, L.; Mancuso, S.; Mondello, L. Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Sci. Rep. 2018, 8, 7243. [Google Scholar] [CrossRef]
- Pacioni, G.; Cerretani, L.; Procida, G.; Cichelli, A. Composition of commercial truffle flavored oils with GC–MS analysis and discrimination with an electronic nose. Food Chem. 2014, 146, 30–35. [Google Scholar] [CrossRef]
- Zampioglou, D.; Kalomiros, J. Design and testing of an electronic nose sensitive to the aroma of Truffles. In Advanced Data Acquisition and Intelligent Data Processing; River Publishers: Gistrup, Denmark, 2014; p. 59. [Google Scholar]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef]
- Caboni, P.; Scano, P.; Sanchez, S.; Garcia-Barreda, S.; Corrias, F.; Marco, P. Multi-platform metabolomic approach to discriminate ripening markers of black truffles (Tuber melanosporum). Food Chem. 2020, 319, 126573. [Google Scholar] [CrossRef]
- Kremser, A.; Jochmann, M.A.; Schmidt, T.C. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Anal. Bioanal. Chem. 2016, 408, 6567–6579. [Google Scholar] [CrossRef]
- Cadwallader, K. Instrumental measurement of milk flavour and colour. In Improving the Safety and Quality of Milk; Elsevier: Amsterdam, The Netherlands, 2010; pp. 181–206. [Google Scholar]
- Bernal, E. Determination of volatile substances in forensic samples by static headspace gas chromatography. In Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications; Salih, B., Ed.; In Tech Europe: London, UK, 2012; pp. 197–224. [Google Scholar]
- Zhang, Z.; Li, G. A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem. J. 2010, 95, 127–139. [Google Scholar] [CrossRef]
- Sparkman, O.D.; Penton, Z.; Kitson, F.G. Gas Chromatography and Mass Spectrometry: A Practical Guide; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Manura, J.; Overton, S. Comparison of sensitivity of headspace GC, purge and trap thermal desorption and direct thermal extraction techniques for volatile organics. SIS Appl. Note 1999, 39. Available online: https://www.sisweb.com/referenc/applnote/app-39.htm (accessed on 24 November 2020).
- D’Auria, M.; Racioppi, R.; Rana, G.L.; Laurita, A. Studies on volatile organic compounds of some truffles and false truffles. Nat. Prod. Res. 2014, 28, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Caprioli, G.; Fiorini, D.; Torregiani, E.; Vittori, S.; Sagratini, G. HS-SPME-GC-MS technique for FFA and hexanal analysis in different cheese packaging in the course of long term storage. Food Res. Int. 2019, 121, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Angeloni, S.; Caprioli, G.; Cortese, M.; Maggi, F.; Marconi, U.M.B.; Perali, A.; Ricciutelli, M.; Sagratini, G.; Vittori, S. Fiber-Sample Distance, An Important Parameter to Be Considered in Headspace Solid-Phase Microextraction Applications. Anal. Chem. 2020, 92, 7478–7484. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. TrAC Trends Anal. Chem. 2019, 113, 172–181. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—A review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Bayón, M.A.; Guichard, E.; Cayot, N. Feasibility and application of solvent assisted flavour evaporation and standard addition method to quantify the aroma compounds in flavoured baked matrices. Food Chem. 2006, 99, 416–423. [Google Scholar] [CrossRef]
- Zhu, W.; Cadwallader, K.R. Streamlined approach for careful and exhaustive aroma characterization of aged distilled liquors. Food Chem. X 2019, 3, 100038. [Google Scholar] [CrossRef]
- High, R.; Bremer, P.; Kebede, B.; Eyres, G.T. Comparison of Four Extraction Techniques for the Evaluation of Volatile Compounds in Spray-Dried New Zealand Sheep Milk. Molecules 2019, 24, 1917. [Google Scholar] [CrossRef] [Green Version]
- Cordero, C.; Kiefl, J.; Reichenbach, S.E.; Bicchi, C. Characterization of odorant patterns by comprehensive two-dimensional gas chromatography: A challenge in omic studies. TrAC Trends Anal. Chem. 2019, 113, 364–378. [Google Scholar] [CrossRef]
- Van Stee, L.; Brinkman, U.T. Peak detection methods for GC× GC: An overview. TrAC Trends Anal. Chem. 2016, 83, 1–13. [Google Scholar] [CrossRef]
- Lubes, G.; Goodarzi, M. Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem. Rev. 2017, 117, 6399–6422. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Singh, R. Advances in instrumental methods to determine food quality deterioration. In Food and Beverage Stability and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2011; pp. 381–404. [Google Scholar]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
Sampling | Analyte Separation | Detecting System | Reference | |
---|---|---|---|---|
Gas chromatography-based methods (GC). | 1. Static Headspace (SHS). 2. Dynamic HS (DHS). 3. Purge and Trap (PT). 4. HS-Solid phase microextraction (HS-SPME). 5. Direct solvent extraction coupled with solvent-assisted flavor evaporation (DSE-SAFE). | 1. Monodimensional GC: DB-WAX, HP-5MS. 2. Comprehensive two-dimensional GC (GC × GC). | 1. Flame Ionization Detector (GC-FID) | [49,71] |
2. Mass spectrometry detector (GC-MS): | ||||
- Quadrupole MS (QMS) | [70] | |||
- Ion trap mass MS (IT-MS) | [72] | |||
- High-Resolution Time-of-Flight MS (HR-TOF). | [27] | |||
3. Olfactometry detector (GC-O) | [73,74,75] | |||
Proton-transfer-reaction mass spectrometry (PTR-MS). | Direct injection of VOC from the HS. | Not applicable | 1. High-Resolution Time-of-Flight MS (TOF). 2. QMS | [76,77,78] |
Electronic nose (EN) sensing | SHS, DHS, PT, and HS-SPME | Not applicable | 1. Metal-oxide sensors (MOS). | [79,80] |
2. Quartz microbalance (QMB) sensors. | [51,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.M.; Angeloni, S.; Nzekoue, F.K.; Abouelenein, D.; Sagratini, G.; Caprioli, G.; Torregiani, E. An Overview on Truffle Aroma and Main Volatile Compounds. Molecules 2020, 25, 5948. https://doi.org/10.3390/molecules25245948
Mustafa AM, Angeloni S, Nzekoue FK, Abouelenein D, Sagratini G, Caprioli G, Torregiani E. An Overview on Truffle Aroma and Main Volatile Compounds. Molecules. 2020; 25(24):5948. https://doi.org/10.3390/molecules25245948
Chicago/Turabian StyleMustafa, Ahmed M., Simone Angeloni, Franks Kamgang Nzekoue, Doaa Abouelenein, Gianni Sagratini, Giovanni Caprioli, and Elisabetta Torregiani. 2020. "An Overview on Truffle Aroma and Main Volatile Compounds" Molecules 25, no. 24: 5948. https://doi.org/10.3390/molecules25245948
APA StyleMustafa, A. M., Angeloni, S., Nzekoue, F. K., Abouelenein, D., Sagratini, G., Caprioli, G., & Torregiani, E. (2020). An Overview on Truffle Aroma and Main Volatile Compounds. Molecules, 25(24), 5948. https://doi.org/10.3390/molecules25245948