Next Article in Journal
Biochar-Based Graphitic Carbon Nitride Adorned with Ionic Liquid Containing Acidic Polymer: A Versatile, Non-Metallic Catalyst for Acid Catalyzed Reaction
Previous Article in Journal
Structural Studies of the Cutin from Two Apple Varieties: Golden Delicious and Red Delicious (Malus domestica)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Natural Products from Octocorals of the Genus Dendronephthya (Family Nephtheidae)

1
Department of Pharmacy, Xiamen Medical College, Xiamen 361023, Fujian, China
2
Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
3
National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
4
Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
5
Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
6
Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115201, Taiwan
7
Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan
8
Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
9
Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
10
Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
11
Department of Immunology & Rheumatology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928004, Taiwan
12
Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
13
Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
*
Authors to whom correspondence should be addressed.
Molecules 2020, 25(24), 5957; https://doi.org/10.3390/molecules25245957
Submission received: 24 November 2020 / Revised: 14 December 2020 / Accepted: 15 December 2020 / Published: 16 December 2020
(This article belongs to the Section Natural Products Chemistry)

Abstract

:
In this review, 170 natural substances, including steroid, diterpenoid, sesquiterpenoid, peptide, prostaglandin, base, chlorolipid, bicyclolactone, amide, piperazine, polyketide, glycerol, benzoic acid, glycyrrhetyl amino acid, hexitol, pentanoic acid, aminoethyl ester, octadecanone, alkaloid, and a 53-kD allergenic component from octocorals belonging to genus Dendronephthya, were listed. Some of these compounds displayed potential bioactivities.

1. Introduction

Octocorals of the genus Dendronephthya (phylum Cnidaria, class Anthozoa, subclass Octocorallia, order Alcyonacea, suborder Alcyoniina, family Nephtheidae) [1], distributed in the Indo-Pacific Ocean, have been investigated. Since the initial study in 1999 discovered four antifouling seco-steroids, isogosterones A–D (14), from an octocoral Dendronethphya sp. collected off the Izu Peninsula, Japan [2] (Figure 1), subsequent studies over the past two decades have yielded a series of interesting secondary metabolites, particularly steroid metabolites. In this article, different types of compounds isolated from Dendronephthya spp., were summarized.

2. Dendronephthya gigantea (Verrill, 1864)

The Dendronephthya genus includes one common species, D. gigantea. Yoshikawa and colleagues isolated five polyhydroxylated sterols, including two new metabolites, dendronesterols A (5) and B (6), along with three known analogues, (22E,24S)-24-methyl-cholesta-7,22-diene-3β,5α, 6β,9α-tetrol (7) [3], (22E)-cholesta-7,22-diene-3β,5α,6β,9α-tetrol (8) [3], and (22E)-24-norcholesta-7, 22-diene-3β,5α,6β-triol (9) [4,5] (Figure 2), from D. gigantea collected off the coast of Tokushima, Japan [6]. The study also established the structures of new sterols 5 and 6 by spectroscopic methods. A cytotoxic assay showed that sterol 6 had an IC50 value of 5.2 µg/mL in the treatment of L1210 (mouse lymphocytic leukemia) cells [6].
In 2004, three new steroids, dendronesterones A–C (1012), along with a known steroid, cholest-1-ene-3,22-dione (13) [7], were isolated from D. gigantea, collected at Green Island, off Taiwan [8] (Figure 3). Structures of steroids 1013 were established by spectroscopic methods, and the 1H and 13C chemical shifts at C-23 and C-24 in steroid 13 were revised in this study. In the cytotoxic testing, steroids 10 and 13 had ED50 values of 9.84 and 8.93 µM, respectively, in the treatment of P-388 (mouse lymphoma) cells, and 13 was cytotoxic toward HT-29 (human colorectal adenocarcinoma) cells with an ED50 value of 9.03 µM [8].
Furthermore, two known metabolites, including a monoalkyl glycerol ether (±)-1-non- adecyloxy-2,3-propanediol (14) [9], a ceramide, (2S,3R,4E,8E)-N-hexadecanoyl-2-amino-4,8- octadecadiene-1,3-diol (15) [10,11,12,13,14], as well as two bases, thymine (16) and uracil (17), (Figure 4), were isolated from the organic extract of D. gigantea, collected in the area of Jeju Island, Korea [15]. The structures of metabolites 1417 were established by spectroscopic methods and by comparison of their physical and spectral data with those of literature values and glycero 14 was found to be cytotoxic toward A549 (human lung epithelial carcinoma), HT-29, HT-1080 (human connective tissue epithelial fibrosarcoma), and SNU-638 (human gastric adenocarcinoma) cells with IC50 values of 15.1, 14.5, 13.7, and 15.5 µg/mL, respectively [15]. Glycerol 14 was not optically active ( [ α ] D 25 0.00 (c 0.134, MeOH)), indicating that this compound is a racemic mixture. Thus, the stereogenic center C-2 in 14 was not determined [15]. Sphingolipid 15 showed cytotoxicity against human peripheral blood mononuclear cells (PBMC) with an ED50 of 20 µg/mL [13].
Eight well known secondary metabolites, including (2S,3R,4E,8E)-N-hexadecanoyl-2-amino-4,8- octadecadiene-1,3-diol (15) [10,11,12,13,14] (Figure 4), (2S,3R,4E)-N-hexadecanoyl-2-amino-4-octadecane-1,3- diol (18) [10,16], N-phenethylacetamide (19) [17,18,19,20,21], cyclo-(Leu-Pro) (20), cyclo-(Ala-Pro) (21), cyclo- (Val-Pro) (22) [22], 2,4-dichlorobenzonic acid (23) [23], thymidine (24) [24,25,26,27,28,29,30,31,32], 2′-deoxyuridine (25) [27,28,29,30,32,33], and cholesterol (26) [30] (Figure 5), were isolated from D. gigantea, collected from the South China Sea [34]. The structures of compounds 15 and 1826 were elucidated by spectral data and by comparison with the spectral and physical data of other known compounds [34].
In 2012, six steroids, including three new compounds, 3-oxocholest-1,22-dien-12β-ol (27), 3- oxocholest-1,4-dien-20β-ol (28), 3-oxocholest-1,4-dien-12β-ol (29), along with three known analogues, (20S)-20-hydroxyergosta-1,4,24-trien-3-one (30) [35], 5α,8α-epidioxycholesta-6,22-dien-3β-ol (31) [36], and 5-cholestene-3β,12β-diol (32) [37] (Figure 6), were isolated from D. gigantea, collected near Geo-Je Island, South Korea [38]. The structures for steroids 2732 were established by spectroscopic methods. Steroids 2731 displayed inhibitory activity against farnesoid X-activated receptor (FXR) with IC50′s 14, 15, 100, 22, and 61 µM, respectively, and were not cytotoxic toward the CV-1 cells (Cercopithecus aethiops, African green monkey kidney cells) [38].
In 2017, Jeon and Lee’s group reported the isolation of a mixture consisting nine 3β-hydroxy- Δ5-steroidal congeners, including 26,27-dinorergosta-5,22-dien-3β-ol (33) [39], cholesta-5,22-dien- 3β-ol (including 22-trans form 34 and 22-cis form 35) [40], cholest-5-en-3β-ol (= cholesterol) (26) [30] (Figure 5), ergosta-5,22-dien-3β-ol (36) [41], stigmasta-5,24-dien-3β-ol (= fucosterol) (37) [42,43,44,45,46,47,48], stigmasta-5,22-dien-3β-ol (38) [48], stigmasta-5-en-3β-ol (39) [48], and 22,23-methylenecholesterol (40) [49] (Figure 7), from D. gigantea collected from Jeju Island, South Korea [50]. The structures for all sterols 26 and 3340 were determined by GC-MS/MS analysis. In lipopolysaccharides (LPS)- stimulated RAW cells, this mixture inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) inflammatory mediators. This sterol-rich mixture also suppressed the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6). The anti-inflammatory effects of this sterol-rich mixture was confirmed in an LPS-stimulated in vivo zebrafish model by the downregulation of iNOS and COX-2 expression, inhibition of NO and reactive oxygen species (ROS) levels, and increased cytoprotective effects against LPS-induced toxicity [50]. Furthermore, this sterol-rich fraction was found to exhibit cytotoxicity toward HL-60 (human acute promyelocytic leukemia) and MCF-7 (Michigan Cancer Foundation-7, human invasive ductal carcinoma) cells with IC50 values of 13.59 and 29.41 µg/mL [51], and one of the mixtures, stigmasta-5-en-3β-ol (39), displayed cytotoxicity on HL-60 and MCF-7 cells with IC50 values of 37.82 and 45.17 µg/mL, respectively [52].
Fifteen steroids, including four new compounds, 7-dehydroerectasteroid F (41), 11α- acetoxyarmatinol A (42), 22,23-didehydroarmatinol A (43), and 3-O-acetylhyrtiosterol (44), as well as 11 known steroids, 24-methylene-5-cholesten-3β,7β-diol (45) [53], 24-methylene-5-cholesten-3β, 19-diol (= litosterol) (46) [54], 24-methylene-5-cholesten-3β,19-diol-7β-monoacetate (47) [55], 5,6- epoxylitosterol (48) [54], armatinol A (49) [56], hyrtiosterol (50) [57,58], (2β,3β,4α,5α,8β,11β)-4- methylergost-24-ene-2,3,8,11-tetrol (51) [58], and erectasteroids C–F (5255) [59] (Figure 8), were isolated from D. gigantea, collected from the inner coral reef of Meishan, Hainan Province, China [60]. The structures of new steroids 4143 were elucidated by comprehensive spectroscopic analysis and steroid 41 was found to show protection against hydrogen-peroxide (H2O2)-induced oxidative damage in neuron-like PC-12 (rat adrenal gland pheochromocytoma) cells by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the expression of heme oxygenase-1 (HO-1) [60].

3. Dendronephthya griffini (Roxas, 1933)

Ten new steroids, griffinisterones A–I (5664) and griffinipregnone (65) (Figure 9), were obtained from D. griffini specimens collected by a bottom trawl net at depths from 200 to 100 m at Taiwan Straight in December 2004 [61,62]. The structures of steroids 5665 were determined by spectroscopic methods and the configuration of griffinisterone A (56) was further confirmed by a single-crystal X-ray diffraction analysis [61,62]. The absolute stereochemistry of griffinisterone E (60) was determined by the application of a modified phenylglycine methyl ester (PGME) method [61]. Anti-inflammatory assays revealed that griffinisterones A–D (5659), F–H (6163), and griffinipregnone (65), reduced the levels of iNOS protein to 49.7, 48.9, 8.1, 29.8, 13.4, 6.5, 15.4, and 59.6%, respectively, at a concentration of 10 µM [61,62]. At the same concentration, griffinisterones F (61), G (62), and griffinipregnone (65), reduced the levels of COX-2 protein to 61.7, 31.5, and 52.3%, respectively [62].
Furthermore, two new interesting polychlorolipids, (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentachloro- pentadec-14-en-4-yl hydrogen sulfate (66), (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentachloropentadec-14- en-4-ol (67), and a new natural substance, (2R,3S,4R,5S,6S,7R,E)-2,3,5,6,7,15-hexachloropentadec- 14-en-4-ol (68) [63,64], along with a known analogue, chlorosulfolipid (69) [63,64] (Figure 10), were obtained from D. griffini [65]. The structures of chlorolipids 6669 were determined by extensive spectroscopic analysis and by comparison of the NMR data with those of known compounds. It was found that chlorolipid 68 has been prepared from the hydrolysis of 69 [63] and by a total synthesis of racemic 68 [64]. Chlorolipid 68 was isolated for the first time from a natural source and the compounds of this type was isolated for the first time from the soft corals [65].

4. Dendronephthya hemprichi (Klunzinger, 1877)

Chemical investigation of the extract of D. hemprichi, collected from the Red Sea, Egypt, delivered a novel glycyrrhetyl amino acid, dendrophen (70), a new sterol, dendrotriol (71), along with the well-known metabolites, cholesterol (26) [30] (Figure 4) and hexitol (72) [66]. The structures of new compounds 70 and 71 were established by spectroscopic methods, although the stereocehmsitry for C-24 stereogenic center in 71 was not determined [66]. Furthermore, chromatography separation of the low-polarity components of D. hemprichi extract afforded 4-oxo- pentanoic acid (73), 2-methyl-acrylic acid 2-diethylaminoethyl ester (74), juniper camphor (75), and 2-octadecanone (76) (Figure 11) [66].

5. Dendronephthya mucronata (Pütter, 1900)

A new pregane-type steroid 5α-pregn-20-en-3,6-dione (77), along with five known steroids, 5α- pregn-20-en-3β-ol (78) [67,68,69], 1,4,20-pregnatrien-3-one (79) [70,71,72,73,74], 15β-acetoxypregna-1,4,20-trien-3-one (80) [73,75], 5α-cholestan-3,6-dione (81) [76,77,78], and 5α-cholest-22-en-3,6-dione (82) [79], (Figure 12), were isolated from D. mucronate collected from waters off Phu Quoc Islands, Kien Giang, Vietnam in 2018 [80]. The structure of new steroid 77 was elucidated by spectroscopic method. Steroids 78 and 81 showed moderate inhibitory effects on LPS-induced NO formation in RAW264.7 murine macrophage cells with IC50 values of 30.15 and 35.97 µM, respectively.
Furthermore, three new bicyclo lactones, dendronephthyones A–C (8385), along with a known analogue, suberosanone B (86) [81] (Figure 13), were isolated from the methanol extract of the same target material D. mucronata [82]. Structures of lactones 8386 were established by spectroscopic methods and these four compounds exhibited cytotoxicity toward HeLa (human papillomavirus-related endocervical adenocarcinoma) cells with IC50 values of 32.48, 30.12, 35.45, and 14.45 µM, respectively [82].

6. Dendronephthya nipponica (Utinomi, 1952)

A red soft-coral D. nipponica cause spiny lobster fisherman living along the coast of Miyazaki Prefecture, Japan to develop occupational allergies. In order to understand the allergic mechanism, a new 53-kD allergenic component (Den n 1) (87) was purified and the N-terminal amino of this allergen component was determined and identified as Asp-Asp-IIe-Asn-Arg-Tyr-Ala-Phe-Asp-Asn-Lys-IIe-Asn-Asp-Lys-Leu-Phe-Asp-His-Trp-Gln-Ser [83].

7. Dendronephthya puetteri (Kükenthal, 1905)

In 2018, Jeon’s group reported the isolation of a 3β-hydroxy-Δ5-steroidal congener, consisting of six sterols, cholesterol (26) [30] (Figure 4), cholesta-5,22-dien-3β-ol (34) [40], ergosta-5,22-dien-3β-ol (36) [41], stigmasta-5-en-3β-ol (39) [48], 22,23-methylenecholesterol (40) [49] (Figure 7), and cholesta-5,24-dien-3β-ol (88) [84] (Figure 14), from D. puetteri, collected from the Jeju Island, South Korea [85]. The structures for all sterols 26, 34, 36, 39, 40, and 88 were determined by GC-MS/MS analysis [85]. In lipopolysaccharides (LPS)-stimulated RAW264.7 cells, this mixture inhibited nitric oxide (NO) production with an IC50 value of 6.54 µg/mL. Moreover, this congener reduced the level of PGE2 TNF-α, IL-1β, and IL-6. The anti-inflammatory effects of this sterol-rich mixture was confirmed in an LPS-stimulated in vivo zebrafish model by the downregulation of NO, iNOS, COX-2, ROS production and cell death [85,86], and this sterol rich congener showed cytotoxicity toward HL-60 and MCF-7 cells with IC50 values of 25.27 and 22.81 µg/mL, respectively [87].

8. Dendronephthya rubeola (Henderson, 1909)

Four new acetoxycapnellenes, 2α,8β,13-triacetoxycapnell-9-ene-10α-ol (89), 3α,8β,14-tri- acetoxycapnell-9-ene-10α-ol (90), 3α,14-diacetoxycapnell-9-ene-8β,10α-diol (91), 3α,8β-di- acetoxycapnell-9-ene-10α-ol (92), and the first epoxyprecapnellene, 3α,4α-epoxyprecapnell-10- ene (93), as well as two known analogues, capnell-9-ene-8β,10α-diol (94) [88,89] and 8β-acetoxy- capnell-9-ene-10α-ol (95) [88,90] (Figure 15), were obtained from D. rubeola, collected from the waters near Bali, Indonesia [91]. Structures of 8995 were established by spectroscopic methods. Compounds 94 and 95 displayed antiproliferative activity against L-929 (murine connective tissue fibroblasts) (GI50 = 6.8, 20.9 µM) [91]; 94 displayed cytotoxicity toward HL-60, K-562 (human chronic myelogenous leukemia), G-402 (human renal leiomyoblastoma), MCF-7, HT-115 (human colon carcinoma), and A-2780 (human ovarian endometrioid adenocarcinoma) cells with IC50 values of 51, 0.7, 42–51, 93, 63, and 9.7 µM, respectively [89]. Compounds 94 and 95 also showed cytotoxicity toward HeLa cells (CC50 = 7.6, 9.4 µM) [91]. It is interesting to note that compound 94 (capnell-9-ene-8β,10α-diol) inhibited the interaction of oncogenic transcription factor Myc (a family of regulator genes and proto-oncogenes that code for transcription factors) with its partner protein Max (inhibition = 77%) in yeast [91].

9. Dendronephthya studeri (Ridley, 1884)

Eleven steroids, including eight new metabolites, (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol (96), (22E)-19,24-dinorcholesta-1,3,5,22-tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5 (10),22-tetraen-3-ol (98), 24-methylene-19-norcholesta-1,3,5,22-tetraen-3-ol (99), (22E,24S)-24- methyl-19-norcholesta-1,3,5,22-tetraen-3-ol (100), (22E,24R)-24-methyl-19-norcholesta-1,3,5, 22-tetraen-3-ol (101), 24-methylenecholesta-1,4,22-trien-3-one (102), and (22E)-24-cholesta-1,4,22- trien-3-one (103), which all were found to be characterized by either the presence of an aromatic ring or a cross-conjugated dienone system in ring A, as well as three known steroids, methyl spongoate (104) [92], 19-norcholesta-1,3,5-trien-3-ol (105) [93,94], and dendronesterone C (12) (Figure 3) [8], were obtained from D. studeri, collected off the coast of Xiaodong Sea, Hainan Province, China [95] (Figure 16). Structures of isolates 12 and 96105 were established by spectroscopic analysis and by comparison of their NMR data with those reported in the literature. Steroid 104 exhibited cytotoxicity against BEL-7402 (human papillomavirus-related endocervical adenocarcinoma), A-549, HT-29, and P-388 cells with IC50 values of 0.14, 5, 5, and 3.8 µg/mL [92].

10. Dendronephthya spp.

Dendronephthya is a genus of octocoral belonging to the family Nephtheidae and there are over 250 described species in this genus. In 1990, Katrich and colleagues identified the correlation between the number of particular phospholipids (PhLs) and prostaglandins (PGs) that influenced the prostaglandin-like activities of the extracts from (1) Dendronephthya sp., collected in the region of the Great Barrier Reef, Australia and (2) Dendronephthya sp., collected in Vietnam [96].
An acetone extract from Dendronephthya sp., collected in 1990, off the Chichi-jima and Haha-jima Islands in the Ogasawara Islands, Japan, showed a high level of antifouling activity against the blue mussel Mytilus edulis [97]. Purification of the extract gave mixtures of sterols and fatty acids as active components. In the sterol mixture, there are several sterols, (24S)-24-methylcholesta-5(E),22- dien-3β-ol (= pincsterol) or (24R)-24-methylcholesta-5(E),22-dien-3β-ol (= brassicasterol) (106) [98], cholesterol (26) [30] (Figure 5), β-sitosterol (stigmasta-5-en-3β-ol) (39) [48], and β-cholestanol (5α- cholestan-3β-ol) (107) [99] were identified and sterol 39 in this study [97] was found to contain 35% of a 24S epimer (clionasterol) (108) [100,101] (Figure 17). Sterol 39 had the highest antifouling activity among sterols 26, 39, and 107 [97]. Moreover, a fatty acid mixture, showing the presence of saturated and unsaturated fatty acids with a chain length of C12 to C22, being rich in C16 and C18 acids as active constituents in antifouling activity [97].
Kawamata et al. isolated an antifouling substance, trigonelline (109) (Figure 18), from Dendronephthya sp. collected at Chichijima Island in the Ogasawara Islands [102]. The structure of 109 was elucidated by spectroscopic methods and this compound showed the same level of settling-inhibitory activity against the acorn barnacle Balanus amphitrite larvae as CuSO4 [102,103].
In 1999, the ethanol extract of two soft coral specimens Dendronephthya (Roxasia) sp. and Dendronephthya (Morchellana) sp., collected off the Gopalpur coast, Bay of Bengal, were found to display attachment inhibitory activity against the settlement of cyprids of barnacle Balanus amphitrite [104], and the extract was claimed to contain natural non-toxic antifouling agents, although no natural products was reported to be active components.
Research by a group in Japan identified four new antifouling seco-steroids, isogosterones A–D (14) (Figure 1) from an octocoral identified as Dendronethphya sp. collected off the Izu Peninsula, Japan [2], and their structures were elucidated on the basis of spectroscopic data. This is the first time to isolate naturally occurring 13,17-secosteroids. It is interesting to note that secosteroids 3 and 4 were interconvertible in CHCl3 and 3 was detected as the hydrolyzed product of 4 [2]. These four secosteroids displayed activity to inhibit the settlement of B. amphitrite cyprid larvae with an EC50 values of 2.2 µg/mL
Furthermore, a new steroid, methyl 3-oxochola-4,22-dien-24-oate (110) (Figure 19) [105], from Dendronephthya sp. collected off the Kii Peninsula, Japan, and determined its structure using spectroscopic methods [105]. Steroid 110 was lethal to cyprids of B. amphitrite at 100 µg/mL (LD100) but did not inhibit larval settlement of B. amphitrite [105].
Four new brominated oxylipins, (4S,5E,7Z,12R,14Z,17Z)-4-hydroxy-17,18-didehydrobromo- vulone-3 (111), (4S,5E,7Z,12R,14Z,17Z)-4-(α-d-glucopyranosyloxy)-17,18-didehydrobromovulone-3 (112), (4R,5E,7Z,12R,14Z,17Z)-4-hydroxy-17,18-didehydrobromovulone-3 (113), and (4R,5E,7Z,12R, 14Z,17Z)-4-(β-D-glucopyranosyloxy)-17,18-didehydrobromovulone-3 (114), (Figure 20) were isolated from Dendronephthya spp. (red variety—for compounds 111 and 112; yellow variety—for compounds 113 and 114) collected in the Gulf of Aqaba in the Red Sea (Eilat, Israel) [106]. The structures, including the absolute configurations of oxylipins 111114, were determined by spectroscopic and chemical methods. All the isolates showed significant inhibition of the growth of crown gall tumors on potato disks inoculated with Agrobacterium tumefaciens and gave positive responses in a brine shrimp toxicity toward Artemia salina; these compounds showed antibacterial activity against the Gram-(+) bacteria Staphylococcus aureus and Bacillus subtilis [106].
Fifteen steroids, including five new compounds, (22E)-3-O-β-formylcholest-5,22-diene (115), (22E)-3-O-β-formyl-24-methyl-cholest-5,22-diene (116), 2-ethoxycarbonyl-2-β-hydroxy-A-nor- cholest-5-ene-4-one (117), (22E)-2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5,22-diene-4-one (118), (22E)-2-ethoxycarbonyl-2-β-hydroxy-24-methyl-A-nor-cholest-5,22-diene-4-one (119), a new natural steroid, 3-β-formyloxycholest-5-ene (120) [107], as well as nine known steroids, 3β,7β-dihydroxy- cholest-5-ene (121) [108,109], (22E)-3β,7α-dihydroxy-cholest-5,22-diene (122) [110], 3β,7α- dihydroxy-24-methylene-cholest-5-ene (123) [109], 3β,7α-dihydroxy-24-methyl-cholest-5,22-diene (124) [110], 3β,7α-dihydroxy-cholest-5-ene (125) [110,111,112], cholest-4-ene-3-one (126) [113,114,115], 24- methylene-cholest-4-ene-3-one (127) [116,117], (22E)-cholest-4,22- dien-3-one (128) [116], and (22E)-24-methyl-cholest-4,22-dien-3-one (129) [118] (Figure 21), were isolated from the soft coral Dendronephthya sp. collected off coral reef in Sanya, Hainan Province, South China Sea of People’s Republic of China [119]. The structures of steroids 115129 were elucidated by spectroscopic methods and by comparison of their spectroscopic data with those reported previously. However, the configuration of Me-28 at stereogenic center C-24 in steroids 116, 119, 124, and 129 were not determined in this study. Steroids 115, 116, and 120 belonging to 3-O-formylated cholesterol analogues and steroids 117119 are unique ring A-contracted steroids [119].
A chemical examination of a soft coral identified as Dendronephthya sp., collected from the inner coral reef in Sanya Bay, Hainan Island of China, resulted in the isolation of 20 cembrane-type diterpenoids [120], including 15 new metabolites, dendronpholides C–F (130133), I–R (134143), and (–)-sandensolide (144) (an enantiomer of sandensolide) [120,121,122,123,124], along with five known compounds, 11-episinulariolide (145) [125,126,127,128,129,130], and sinulaflexiolides E, F, J, K (146149) [128] (Figure 22). The structures of all isolates 130149 were determined through spectroscopic methods and by comparison with those reported in literature [120]. Cembranoid dendronpholides C (130), J (135), and sinulaflexiolide E (146) showed cytotoxicity toward BGC-823 (human papillomavirus-related endocervical adenocarcinoma) cells with IC50 values of 0.05, 0.20, 0.02 µg/mL, respectively, whereas the other compounds were not active. A comparison of the cytotoxic data between 130 and 144 revealed that the methyl ester functionality plays a crucial role in the inhibition of BGC-823 cells compared to the the ε-lactone functionality. This is the first report of cembrane-type diterpenoids from the soft corals belonging to the genus Dendronephthya [120].
In 2010, two tetrahydroxylated sterols, including a new compound, 23-nor-ergost-24-ene- 3β,5α,6β,7β-tetrol (150) and a known analogue, ergost-24-ene-3β,6β,9α,19β-tetrol (151) [131], were isolated from Dendronephthya sp. collected from Naozhou Islands of the South China Sea [132] (Figure 23). The structures of sterols 150 and 151 were identified by spectroscopic methods [132]. Sterol 150 showed cytotoxicity toward the BEL-7402, MCG (human plasma cell myeloma), MCF, LoVo (human colorectal adenocarcinoma), and Hep G2 (human hepatocellular carcinoma) cells with IC50 values of 32.2, 20.5, 2.0, 5.5, and 18.6 µg/mL, respectively, and sterol 151 was cytotoxic against MCG and LoVo cells (IC50 = 22.0, 13.8 µg/mL), respectively [132].
Three new ylangene-type sesquiterpenoids, dendronephthols A–C (152154) (Figure 24), together with two known steroids, dendronesterone A (10) [8] (Figure 3) and cholesterol (26) [30] (Figure 5), were isolated from a Red Sea soft coral Dendronephthya sp., collected near the coast of Hurghada, Egypt [133]. The structures of new sesquiterpenoids 152154 were established by spectroscopic methods and 152 and 154 were found to be cytotoxic against L5178Y (mouse lymphoma) cells with ED50 values of 8.4 and 6.8 µg/mL, respectively [133].
Furthermore, two new steroids, dendronesterones D (155) and E (156), featuring with 1,4-dienone moiety, together with three known steroids, methyl 3-oxochola-4,22-dien-24-oate (110) [105] (Figure 19), 5α,8α-epidioxy-24(S)-methylcholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy- 24(S)-methylcholesta-6,9,22-trien-3β-ol (158) [36,134], were isolated from an octocoral Dendronephthya sp., collected off the northeast coast of Taiwan [135] (Figure 25). The structures of new steroids 155 and 156 were elucidated by using spectroscopic methods and 155 was found to suppress the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to 24.2 and 70.4% at a concentration of 10 µM [135].
Two new 2,5-piperazinedione derivatives, janthinolides A (159) and B (160), as well as a new natural product, deoxymycelianamide (161) [136,137], and two known metabolites, griseofulvin (162) [138,139,140,141,142], and dechlorogriseofulvin (163) [142,143,144], were isolated from the fermentation broths of the endophytic fungus Penicillium janthinellum, isolated from a soft coral identified as Dendronephthya sp., collected in the South China Sea [145]. The structures of metabolites 159163 were determined by spectroscopic data analysis and compound 162 displayed inhibitory concentration at 2.75 and 20 µg/mL against the fungal pathogen Alternaria solani and ascomycetous pathogen Pyricularia oryzae, respectively [145] (Figure 26).
Moreover, seven isoechinulin-type alkaloids, neoechinulin A (164) [146,147,148,149,150,151,152,153,154], preechinulin (165) [155,156], isoechinulin A (166) [149,157], tardioxopiperazine A (167) [158], variecolorin L (168) [159], dihydroxyisoechinulin A (169) [160], and L-alanyl-L-tryptophan anhydride (170) [161] (Figure 27), were isolated from the fermentation broths of an endophytic fungus Nigrospora oryzae isolated from a soft coral identified as Dendronephthya sp. collected in the South China Sea [162]. The structures of 164170 were determined by their spectroscopic data and by comparison with those reported in the literature. In the antifouling activity against the larval settlement of barnacle Balanus amphitrite, compound 166 showed activity with an IC50 value of 5.92 µg/mL [162].

11. Conclusions

Ever since the seco-steroids, isogosterones A–D (14) were obtained from a specimen of the octocoral Dendronephthya collected off the Izu Peninsula, Japan [2], 170 interesting secondary metabolites, including 96 steroids (56.47%), 20 cembranes (11.76%), 11 sesquiterpenoids (6.47%), 11 amides (6.47%), 4 chlorolipids (2.35%), 4 bicyclic lactones (2.35%), 4 prostaglandins (2.35%), 4 bases (2.35%), 3 peptides (1.76%), 2 polyketides (1.18%), 2 ceramides (1.18%), 1 glycerol (0.59%), 1 glycyrrhetyl amino acid (0.59%), 1 benzoic acid (0.59%), 1 trigonelline (0.59%), 1 hexitol (0.59%), 1 pentanoic acid (0.59%), 1 octadecanone (0.59%), 1 aminoethyl ester (0.59%), and a 53-KD allergenic component (0.59%), were produced by Dendronephthya spp., and extensive biomedical activities, especially in cytotoxicity and anti-inflammatory activity, were related to these natural substances (Figure 28).
All the secondary metabolites from Dendronephthya spp., reported between 1999 and 2019 were obtained from the octocorals distributed in the Indo-Pacific Ocean and Red Sea. As more than 56% of the compounds obtained from the Dendronephthya genus are steroids, based on above findings, these results suggest that continuing the investigation of new steroid analogues with the potential bioactivities from this marine organism are worthwhile for further development. The octocoral Dendronephthya sp. had been transplanted to culturing tanks located in the National Museum of Marine Biology and Aquarium, Taiwan, for the extraction of additional natural products to establish a stable supply of bioactive material.

Author Contributions

Y.-H.C. (Yung-Husan Chen), C.-M.H., and P.-J.S. contributed in terms of writing the manuscript. Y.-C.C., Y.-H.C. (Yu-Hsin Chen), L.-G.Z., P.-C.H., T.-H.H., B.-R.P., Y.-Y.C., Y.-J.W., L.-S.F., and J.-H.S., conceived and designed the format of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by grants from the National Museum of Marine Biology and Aquarium; the Ministry of Science and Technology (Grant Nos. MOST 109-2320-B-276-002-MY3, 107-2320-B-291-001-MY3, 109-2320-B-291-001-MY3), Taiwan, awarded to Yu-Jen Wu and Ping-Jyun Sung.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dai, C.-F.; Chin, C.-H. Octocoral Fauna of Kenting National Park, 1st ed.; Kenting National Park Headquaters: Kenging Pingtung, Taiwan, 2019; pp. 54, 382–405. [Google Scholar]
  2. Tomono, Y.; Hirota, H.; Fusetani, N. Isogosterones A–D, antifouling 13,17-secosteroids from an octocoral Dendronephthya sp. J. Org. Chem. 1999, 64, 2272–2275. [Google Scholar] [CrossRef]
  3. Migliuolo, A.; Notaro, G.; Piccialli, V.; Sica, D. New tetrahydroxylated sterols from the marine sponge Spongia officinalis. J. Nat. Prod. 1990, 53, 1414–1424. [Google Scholar] [CrossRef]
  4. Piccialli, V.; Sica, D. Four new trihydroxylated sterols from the sponge Spongionella gracilis. J. Nat. Prod. 1987, 50, 915–920. [Google Scholar] [CrossRef]
  5. Cafieri, F.; Fattorusso, E.; Gavagnin, M.; Santacroce, C. 3β,5α,6β-Trihydroxysterols from the Mediterranean bryozoan Myriapora truncata. J. Nat. Prod. 1985, 48, 944–947. [Google Scholar] [CrossRef]
  6. Yoshikawa, K.; Kanekuni, S.; Hanahusa, M.; Arihara, S.; Ohta, T. Polyhydroxylated sterols from the octocoral Dendronephthya gigantea. J. Nat. Prod. 2000, 63, 670–672. [Google Scholar] [CrossRef]
  7. Seo, Y.; Jung, J.H.; Rho, J.-R.; Shin, J.; Song, J.-I. Isolation of novel bioactive steroids from the soft coral Alcyonium gracillimum. Tetrahedron 1995, 51, 2497–2506. [Google Scholar] [CrossRef]
  8. Duh, C.-Y.; El-Gamal, A.A.H.; Song, P.-Y.; Wang, S.-K.; Dai, C.-F. Steroids and sesquiterpenoids from the soft corals Dendronephthya gigantea and Lemnalia cervicorni. J. Nat. Prod. 2004, 67, 1650–1653. [Google Scholar] [CrossRef]
  9. Quijano, L.; Cruz, F.; Navarrete, I.; Gómez, P.; Rios, T. Alkyl glycerol monoethers in the marine sponge Desmapsamma anchorata. Lipids 1994, 29, 731–734. [Google Scholar] [CrossRef]
  10. Shin, J.; Seo, Y. Isolation of new ceramides from the gorgonian Acabaria undulata. J. Nat. Prod. 1995, 58, 948–953. [Google Scholar] [CrossRef]
  11. Subrahmanyam, C.; Kulatheeswaran, R.; Venkateswara Rao, C. New spingosines from two soft corals of the Andaman & Nicobar Islands. Indian J. Chem. 1996, 35B, 578–580. [Google Scholar]
  12. Liang, L.; Deng, S.; Wu, H. Studies on the chemical constituents of the soft coral Lobophytum sp. from South China Sea. Chin. J. Mar. Drugs 2000, 19, 5–7. [Google Scholar]
  13. Muralidhar, P.; Kumar, M.M.; Krishna, N.; Rao, C.B.; Rao, D.V. New sphingolipids and a sterol from a Lobophytum species of the Indian Ocean. Chem. Pharm. Bull. 2005, 53, 168–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Zhou, G.-X.; Huang, M.-Y.; Shi, J.-G. Ceramides and cerebrosides from Bugula neritina. Chin. J. Mar. Drugs 2005, 24, 37–40. [Google Scholar]
  15. Han, A.-R.; Song, J.-I.; Jang, D.S.; Min, H.-Y.; Lee, S.K.; Seo, E.-K. Cytotoxic constituents of the octocoral Dendronephthya gigantea. Arch. Pharm. Res. 2005, 28, 290–293. [Google Scholar] [CrossRef]
  16. Marinetti, G.V.; Stotz, E. The isolation of N-stearyl- and N-palmitylsphingosines from beef spleen. J. Am. Chem. Soc. 1957, 79, 145–146. [Google Scholar] [CrossRef]
  17. Llinarés, J.; Elguero, J.; Faure, R.; Vincent, E.-J. Carbon-13 NMR studies of nitrogen compounds. I–Substituent effects of amino, acetamido, diacetamido, ammonium and trimethylammonium groups. Org. Magn. Res. 1980, 14, 20–24. [Google Scholar] [CrossRef]
  18. Maskey, R.P.; Asolkar, R.N.; Kapaun, E.; Wagner-Döbler, I.; Laatsch, H. Phytotoxic arylethylamides from limnic bacteria using a screening with microalgae. J. Antibiotics 2002, 55, 643–649. [Google Scholar] [CrossRef] [Green Version]
  19. Zhao, P.-J.; Wang, H.-X.; Li, G.-H.; Li, H.-D.; Liu, J.; Shen, Y.-M. Secondary metabolites from endophytic Streptomyces sp. Lz531. Chem. Biodivers. 2007, 4, 899–904. [Google Scholar] [CrossRef]
  20. Han, W.-J.; Lu, X.-L.; Xu, Q.-Z.; Liu, X.-Y.; Jiao, B.-H. Isolation, identification and biological characterization of secondary metabolites produced by a marine Bacillus subtilis. Acad. J. Second Mil. Med. Univ. 2008, 29, 1234–1238. [Google Scholar] [CrossRef]
  21. Wu, H.-H.; Tian, L.; Chen, G.; Xu, N.; Wang, Y.-N.; Sun, S.; Pei, Y.-H. Six compounds from marine fungus Y26-02. J. Asian Nat. Prod. Res. 2009, 11, 748–751. [Google Scholar] [CrossRef]
  22. Gautschi, M.; Schmid, J.P.; Peppard, T.L.; Ryan, T.P.; Tuorto, R.M.; Yang, X. Chemical characterization of diketopiperazines in beer. J. Agric. Food Chem. 1997, 45, 3183–3189. [Google Scholar] [CrossRef]
  23. Wright, A.D.; Papendorf, O.; König, G.M. Ambigol C and 2,4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischcherella ambigua. J. Nat. Prod. 2005, 68, 459–461. [Google Scholar] [CrossRef] [PubMed]
  24. Levene, P.A.; Tipson, R. Stuart. The ring structure of thymidine. Science 1935, 81, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Ericson, L.-E.; Widoff, E.; Bánhidi, Z.G. Studies of growth factors for Streptococcus faecalis occurring in marine algae. Acta Chem. Scand. 1953, 7, 974–979. [Google Scholar] [CrossRef] [Green Version]
  26. Jones, A.J.; Grant, D.M.; Winkley, M.W.; Robins, R.K. Carbon-13 magnetic resonance. XVII. Pyrimidine and purine nucleosides. J. Am. Chem. Soc. 1970, 92, 4079–4087. [Google Scholar] [CrossRef] [PubMed]
  27. Komori, T.; Sanechika, Y.; Ito, Y.; Matsuo, J.; Nohara, T.; Kawasaki, T. Biologically active glycosides from Asteroidea, I.-Structures of a new cerebroside mixture and of two nucleosides from the starfish Acanthaster planci. Liebigs Ann. Chem. 1980, 1980, 653–668. [Google Scholar] [CrossRef]
  28. Deng, S.; Wu, J.; Li, F.; Peng, S.; Chen, J.; Liu, X.; Zhong, H. Studies on the activity constituent of sponge from South China Sea Gelliodes spinosella Thiele (I). Guangzhou Chem. 1993, 1, 37–41. [Google Scholar]
  29. Xiao, D.; Deng, S.; Wu, H. A study on chemical constituents of the South China Sea marine sponge Pachychalina sp. Nat. Prod. Res. Devel. 1997, 9, 1–4. [Google Scholar]
  30. Shao, Z.-Y.; Guo, Y.-W.; Yu, J.-L.; Zhu, D.-Y. Studied on chemical constitution of Dysidea sp. from South China Sea. Nat. Prod. Res. Dev. 2004, 16, 19–22. [Google Scholar]
  31. Wang, B.; Dong, J.; Zhou, X.; Lee, K.J.; Huang, R.; Zhang, S.; Liu, Y. Nucleosides from the marine sponge Haliclona sp. Z. Naturforsch. C 2009, 64, 143–148. [Google Scholar] [CrossRef]
  32. Huang, R.-M.; Chen, Y.-N.; Zeng, Z.; Gao, C.-H.; Su, X.; Peng, Y. Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis. Mar. Drugs 2014, 12, 5817–5838. [Google Scholar] [CrossRef] [Green Version]
  33. Huang, R.; Zhou, X.; Peng, Y.; Yang, X.; Xu, T.; Liu, Y. Nucleosides from the marine sponge Callyspongia sp. Chem. Nat. Comp. 2011, 46, 1010–1011. [Google Scholar] [CrossRef]
  34. Wang, Y.-L.; Liao, X.-J.; Xu, S.-H. Study on chemical constituents of soft coral Dendronephthya gigantea from the South China Sea. Chin. Pharm. J. 2009, 44, 740–742. [Google Scholar]
  35. Mellado, G.G.; Zubía, E.; Ortega, M.J.; López-González, P.J. Steroids from the Antarctic octocoral Anthomastus bathyproctus. J. Nat. Prod. 2005, 68, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
  36. Gunatilaka, A.A.L.; Gopichand, Y.; Schmitz, F.J.; Djerassi, C. Minor and trace sterols in marine invertebrates. 26. Isolation and structure elucidation of nine new 5α,8α-epidioxy sterols from four marine organisms. J. Org. Chem. 1981, 46, 3860–3866. [Google Scholar] [CrossRef]
  37. Swell, L.; Gustafsson, J.; Schwartz, C.C.; Halloran, L.G.; Danielsson, H.; Vlahcevic, Z.R. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. J. Lipid Res. 1980, 21, 455–466. [Google Scholar]
  38. Shin, K.; Chin, J.; Hahn, D.; Lee, J.; Hwang, H.; Won, D.H.; Ham, J.; Choi, H.; Kang, E.; Kim, H.; et al. Sterols from a soft coral, Dendronephthya gigantea as farnesoid X-activated receptor antagonists. Steroids 2012, 77, 355–359. [Google Scholar] [CrossRef]
  39. Smith, A.G.; Goad, L.J. Sterol biosynthesis by the sea urchin Echinus esculentus. Biochem. J. 1974, 142, 421–427. [Google Scholar] [CrossRef] [Green Version]
  40. Idler, D.R.; Wiseman, P. Identification of 22-cis-cholesta-5,22-dien-3β-ol and other scallop sterols by gas-liquid chromatography and mass spectrometry. Comp. Biochem. Physiol. 1971, 38A, 581–590. [Google Scholar] [CrossRef]
  41. Byju, K.; Anuradha, V.; Vasundhara, G.; Nair, S.M.; Kumar, N.C. In vitro and in silico studies on the anticancer and apoptosis-inducing activities of the sterols identified from the soft coral, Subergorgia reticulata. Pharmacogn. Mag. 2014, 10, S65–S71. [Google Scholar]
  42. Heilbron, I.M.; Phipers, R.F.; Wright, H.R. Chemistry of the brown algae. Nature 1934, 133, 419. [Google Scholar] [CrossRef]
  43. Heilbron, I.; Phipers, R.F.; Wright, H.R. The chemistry of the the algae. Part I. The algae sterol fucosterol. J. Chem. Soc. 1934, 1572–1576. [Google Scholar] [CrossRef]
  44. Nes, W.R.; Castle, M.; McClanahan, J.L.; Settine, J.M. Confirmation of the structure of fucosterol by nuclear magnetic resonance spectroscopy (1). Steroids 1966, 8, 655–657. [Google Scholar] [CrossRef]
  45. Patterson, G.W. The distribution of sterols in algae. Lipids 1971, 6, 120–127. [Google Scholar] [CrossRef]
  46. Sheu, J.-H.; Sung, P.-J. Isolation of 24-hydroperoxy-24-vinylcholesterol and fucosterol from the brown alga Turbinaria conoides. J. Chin. Chem. Soc. 1991, 38, 501–503. [Google Scholar] [CrossRef]
  47. Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Chiu, Y.-H.; Duh, C.-Y. Cytotoxic sterols from the Formosan brown alga Turbinaria ornata. Planta Med. 1997, 63, 571–572. [Google Scholar] [CrossRef]
  48. Ribeiro, S.M.; Cassiano, K.M.; Cavalcanti, D.N.; Teixeira, V.L.; Pereira, R.C. Isolated and synergistic effects of chemical and structural defenses of two species of Tethya (Porifera: Demospongiae). J. Sea Res. 2012, 68, 57–62. [Google Scholar] [CrossRef]
  49. Padhan, S.K.; Mishra, P.M.; Baliarsingh, S.; Sree, A.; Panigrahi, M. Fatty acid profile and sterol composition of the marine sponge Petrosia testudinaria. Chem. Nat. Comp. 2015, 51, 323–325. [Google Scholar] [CrossRef]
  50. Shanura Fernando, I.P.; Asanka Sanjeewa, K.K.; Kim, H.-S.; Kim, S.-Y.; Lee, S.-H.; Lee, W.W.; Jeon, Y.-J. Identification of sterols from the soft coral Dendronephthya gigantea and their anti-inflammatory potential. Environ. Toxicol. Pharmacol. 2017, 55, 37–43. [Google Scholar] [CrossRef]
  51. Shanura Fernando, I.P.; Asanka Sanjeewa, K.K.; Kim, H.-S.; Wang, L.; Lee, W.W.; Jeon, Y.-J. Apoptotic and antiproliferative properties of 3β-hydroxy-Δ5-steroidal congeners from a partially purified column fraction of Dendronephthya gigantea against HL-60 and MCF-7 cancer cells. J. Appl. Toxicol. 2018, 38, 527–536. [Google Scholar] [CrossRef]
  52. Shanura Fernando, I.P.; Asanka Sanjeewa, K.K.; Ann, Y.-S.; Ko, C.-I.; Lee, S.-H.; Lee, W.W.; Jeon, Y.-J. Apoptotic and antiproliferative properties of stigmast-5-en-3-ol from Dendronephthya gigantea on human leukemia HL-60 and human breast cancer MCF-7 cells. Toxicol. in Vitro 2018, 52, 297–305. [Google Scholar] [CrossRef] [PubMed]
  53. Findlay, J.A.; Patil, A.D. Novel sterols from the finger sponge Haliclona oculata. Can. J. Chem. 1985, 63, 2406–2410. [Google Scholar] [CrossRef] [Green Version]
  54. Ighchi, K.; Saitoh, S.; Yamada, Y. Novel 19-oxygenated sterols from the Okinawan soft coral Litophyton virids. Chem. Pharm. Bull. 1989, 37, 2553–2554. [Google Scholar] [CrossRef] [Green Version]
  55. Bortolotto, M.; Braekman, J.C.; Daloze, D.; Losman, D.; Tursch, B. Chemical studies of marine invertebrates. XXIII. A novel polyhydroxylated sterol from the soft coral Litophyton viridis (Coelenterata, Octocorallia, Alcyonacea). Steroids 1976, 28, 461–466. [Google Scholar] [CrossRef]
  56. El-Gamal, A.A.H.; Wang, S.-K.; Dai, C.-F.; Duh, C.-Y. New nardosinanes and 19-oxygenated ergosterols from the soft coral Nephthea armata collected in Taiwan. J. Nat. Prod. 2004, 67, 1455–1458. [Google Scholar] [CrossRef]
  57. Youssef, D.T.A.; Singab, A.N.B.; van Soest, R.W.M.; Fusetani, N. Hyrtiosenolides A and B, two new sesquiterpenes γ-methoxybutenolides and a new sterol from a Red Sea sponge Hyrtios species. J. Nat. Prod. 2004, 67, 1736–1739. [Google Scholar] [CrossRef]
  58. Jia, R.; Guo, Y.-W.; Mollo, E.; Gavagnin, M.; Cimino, G. Two new polyhydroxylated steroids from the Hainan soft coral Sinularia sp. Helv. Chim. Acta 2006, 89, 1330–1336. [Google Scholar] [CrossRef]
  59. Cheng, S.-Y.; Dai, C.-F.; Duh, C.-Y. New 4-methylated and 19-oxygenated steroids from the Formosan soft coral Nephthea erecta. Steroids 2007, 72, 653–659. [Google Scholar] [CrossRef]
  60. Wu, J.; Xi, Y.; Huang, L.; Li, G.; Mao, Q.; Fang, C.; Shan, T.; Jiang, W.; Zhao, M.; He, W.; et al. A steroid-type antioxidant targeting the Keap1/Nrf2/ARE signaling pathway from the soft coral Dendronephthya gigantea. J. Nat. Prod. 2018, 81, 2567–2575. [Google Scholar] [CrossRef]
  61. Chao, C.-H.; Wen, Z.-H.; Chen, I.-M.; Su, J.-H.; Huang, H.-C.; Chiang, M.Y.; Sheu, J.-H. Anti- inflammatory steroids from the octocoral Dendronephthya griffini. Tetrahedron 2008, 64, 3554–3560. [Google Scholar] [CrossRef]
  62. Chao, C.-H.; Wen, Z.-H.; Su, J.-H.; Chen, I.-M.; Huang, H.-C.; Dai, C.-F.; Sheu, J.-H. Further study on anti- inflammatory oxygenated steroids from the octocoral Dendronephthya griffini. Steroids 2008, 73, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
  63. Ciminiello, P.; Fattorusso, E.; Forino, M.; Di Rosa, M.; Ianaro, A.; Poletti, R. Structural elucidation of a new cytotoxin isolated from mussels of the Adriatic Sea. J. Org. Chem. 2001, 66, 578–582. [Google Scholar] [CrossRef] [PubMed]
  64. Nilewski, C.; Geisser, R.W.; Carreira, E.M. Total synthesis of a chlorosulpholipid cytotoxin associated with seafood poisoning. Nature 2009, 457, 573–577. [Google Scholar] [CrossRef] [PubMed]
  65. Chao, C.-H.; Huang, H.-C.; Wang, G.-H.; Wen, Z.-H.; Wang, W.-H.; Chen, I.-M.; Sheu, J.-H. Chlorosulfolipids and the corresponding alcohols from the octocoral Dendronephthya griffini. Chem. Pharm. Bull. 2010, 58, 944–946. [Google Scholar] [CrossRef] [Green Version]
  66. Shaaban, M.; Shaaban, K.A.; Abd-Alla, H.I.; Hanna, A.G.; Laatsch, H. Dendrophen, a novel glycyrrhetyl aminon acid from Dendronephthya hemprichi. Z. Naturforsch. 2011, 66b, 425–432. [Google Scholar] [CrossRef]
  67. Schow, S.R.; McMorris, T.C. Synthesis of 5α-pregna-1,20-dien-3-one. Steroids 1977, 30, 389–392. [Google Scholar] [CrossRef]
  68. Lorenzo, M.; Cueto, M.; D’Croz, L.; Maté, J.L.; San-Martín, A.; Darias, J. Muriceanol, a 24-epoxide sterol link in the carbon flux toward side-chain dealkylation of sterols. Eur. J. Org. Chem. 2006, 2006, 582–585. [Google Scholar] [CrossRef] [Green Version]
  69. Ioannou, E.; Abdel-Razik, A.F.; Alexi, X.; Vagias, C.; Alexis, M.N.; Roussis, V. Pregnanes with antiproliferative activity from the gorgonian Eunicella cavolini. Tetrahedron 2008, 64, 11797–11801. [Google Scholar] [CrossRef]
  70. Higgs, M.D.; Faulkner, D.J. 5α-Pregna-1,20-dien-3-one and related compounds from a soft coral. Steroids 1977, 30, 379–388. [Google Scholar] [CrossRef]
  71. Kingston, J.F.; Gregory, B.; Fallis, A.G. Pregna-1,4,20-triene-3-one, a novel marine steroid from the sea raspberry Gersemia rubiformis. Tetrahedron Lett. 1977, 18, 4261–4264. [Google Scholar] [CrossRef]
  72. Kingston, J.F.; Gregory, B.; Fallis, A.G. Marine natural products. Novel C21 A20 pregnanes from the sea raspberry (Gersemia rubiformis). J. Chem. Soc. Perkin Trans. I 1979, 2064–2068. [Google Scholar] [CrossRef]
  73. Ciavatta, M.L.; Lopez Gresa, M.P.; Manzo, E.; Gavagnin, M.; Wahidulla, S.; Cimino, G. New C21 Δ20 pregnanes, inhibitors of mitochondrial respiratory chain, from Indopacific octocoral Carijoa sp. Tetrahedron Lett. 2004, 45, 7745–7748. [Google Scholar] [CrossRef]
  74. Yan, X.-H.; Jia, R.; Shen, X.; Guo, Y.-W. A new dolabellane diterpenoid from the Hainan soft coral Spongodes sp. Nat. Prod. Res. 2007, 21, 897–902. [Google Scholar] [CrossRef] [PubMed]
  75. Nam, N.H.; Huong, N.T.; Hanh, T.T.H.; Thanh, N.V.; Cuong, N.X.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Pregnane steroids from the Vietnamese octocoral Carijoa riisei. Nat. Prod. Res. 2017, 31, 2435–2440. [Google Scholar]
  76. Nussim, M.; Mazur, Y.; Sondheimer, F. The hydration of unsaturated steroids by the Brown Hydroboration Reaction. I. Monounsaturated steroids. J. Org. Chem. 1964, 29, 1120–1131. [Google Scholar] [CrossRef]
  77. Wahidulla, S.; D’Souza, L.; Patel, J. 5α-Cholestane-3,6-dione from the red alga Acantophora spicifera. Phytochemistry 1987, 26, 2864–2865. [Google Scholar] [CrossRef]
  78. Wijnberg, J.B.P.A.; de Groot, A. Synthesis and 13C-NMR analysis of 5α- and 5β-cholestane-3,6-dione. Steroids 1989, 54, 333–344. [Google Scholar] [CrossRef]
  79. Gosavi, K.; Moses Babu, J.; Mathur, H.H.; Bhadbhade, M. Isolation and X-ray structure of a new 3,6-diketo steroid from red alga Hypnea musciformis. Chem. Lett. 1995, 24, 519–520. [Google Scholar] [CrossRef]
  80. Ngoc, N.T.; Hanh, T.T.H.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Ivanchina, N.V.; Dang, N.H.; Kicha, A.A.; Kiem, P.V.; Minh, C.V. Steroids from Dendronephthya mucronata and their inhibitory effects on lipopolysaccharide-induced NO formation in RAW264.7 cells. Chem. Nat. Comp. 2019, 55, 1090–1093. [Google Scholar] [CrossRef]
  81. Zhang, J.; Liang, Y.; Li, L.-C.; Xu, S.-H. Suberosanones A–C, new metabolites possessing cyclopentenone system from the South China Sea gorgonian coral Subergorgia suberosa. Helv. Chim. Acta 2014, 97, 128–136. [Google Scholar] [CrossRef]
  82. Ngoc, N.T.; Hanh, T.T.H.; Nguyen, H.D.; Quang, T.H.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Ngai, N.D.; Kiem, P.V.; Minh, C.V. Bicyclic lactones from the octocoral Dendronephthya mucronata. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef] [PubMed]
  83. Onizuka, R.; Kamiya, H.; Muramoto, K.; Goto, R.; Inoue, K.; Kumamoto, K.; Nakajima, Y.; Iida, S.; Ishigami, F. Purification of the major allergen of red soft coral (Dendronephthya nipponica). Int. Arch. Allergry Immunol. 2001, 125, 135–143. [Google Scholar] [CrossRef] [PubMed]
  84. Wilson, W.K.; Sumpter, R.M.; Warren, J.J.; Rogers, P.S.; Ruan, B.; Schroepfer, G.J., Jr. Analysis of unsaturated C27 sterols by nuclear magnetic resonance spectroscopy. J. Lipid Res. 1996, 37, 1529–1555. [Google Scholar] [PubMed]
  85. Fernando, I.P.S.; Lee, W.W.; Jayawardena, T.U.; Kang, M.-C.; Ann, Y.-S.; Ko, C.-I.; Park, Y.J.; Jeon, Y.-J. 3β-Hydroxy-Δ5-steroidal congeners from a column fraction of Dendronephthya puetteri attenuate LPS-induced inflammatory responses in RAW 264.7 macrophages and zebrafish embryo model. RSC Adv. 2018, 8, 18626–18634. [Google Scholar] [CrossRef] [Green Version]
  86. Kim, E.-A.; Ding, Y.; Yang, H.-W.; Heo, S.-J.; Lee, S.-H. Soft coral Dendronephthya puetteri extract ameliorates inflammations by suppressing inflammatory mediators and oxidative stress in LPS- stimulated zebrafish. Int. J. Mol. Sci. 2018, 19, 2695. [Google Scholar] [CrossRef] [Green Version]
  87. Jayawardena, T.U.; Lee, W.W.; Fernando, I.P.S.; Sanjeewa, K.K.A.; Wang, L.; Lee, T.-G.; Park, Y.J.; Ko, C.-I.; Jeon, Y.-J. Antiproliferative and apoptosis-inducing potential of 3β-hydroxy-Δ5-steroidal congeners purified from the soft coral Dendronephthya puetteri. J. Oceanol. Limnol. 2019, 37, 1382–1392. [Google Scholar] [CrossRef]
  88. Sheikh, Y.M.; Singy, G.; Kaisin, M.; Eggert, H.; Djerassi, C.; Tursch, B.; Daloze, D.; Braekman, J.C. Chemical studies of marine invertebrates–XIV. Four representatives of a novel sesquiterpene class–the capnellane skeleton. Tetrahedron 1976, 32, 1171–1178. [Google Scholar] [CrossRef]
  89. Morris, L.A.; Jaspars, M.; Adamson, K.; Woods, S.; Wallace, H.M. The capnellenes revisited: New structures and new biological activity. Tetrahedron 1998, 54, 12953–12958. [Google Scholar] [CrossRef]
  90. Kaisin, M.; Braekman, J.C.; Daloze, D.; Tursch, B. Novel acetoxycapnellenes from the alcyonacean Capnella imbricata. Tetrahedron 1985, 41, 1067–1072. [Google Scholar] [CrossRef]
  91. Grote, D.; Hänel, F.; Dahse, H.-M.; Seifert, K. Capnellenes from the soft coral Dendronephthya rubeola. Chem. Biodivers. 2007, 4, 1683–1693. [Google Scholar] [CrossRef]
  92. Yan, X.-H.; Lin, L.-P.; Ding, J.; Guo, Y.-W. Methyl spongoate, a cytotoxic steroid from the Sanya soft coral Spongodes sp. Bioorg. Med. Chem. Lett. 2007, 17, 2661–2663. [Google Scholar] [CrossRef] [PubMed]
  93. Suginome, H.; Senboku, H.; Yamada, S. A new aromatization of ring-A of steroids. Synthesis of estrone. Tetrahedron Lett. 1988, 20, 79–80. [Google Scholar] [CrossRef]
  94. Kočovský, P.; Baines, R.S. Stereoelectronically controlled, thallium(III)-mediated C-19 degradation of 19-hydroxy steroids. An expedient route to estrone and its congeners via 19-nor-10β-hydroxy intermediates. J. Org. Chem. 1994, 59, 5439–5444. [Google Scholar] [CrossRef]
  95. Yan, X.-H.; Liu, H.-L.; Huang, H.; Li, X.-B.; Guo, Y.-W. Steroids with aromatic A-rings from the Hainan soft coral Dendronephthya studeri Ridley. J. Nat. Prod. 2011, 74, 175–180. [Google Scholar] [CrossRef] [PubMed]
  96. Katrich, E.M.; Isai, S.V.; Mishchenko, T.Y. Phospholipid composition of prostaglandin extracts of some marine invertebrates with different degrees of prostaglandin-like activity. Chem. Nat. Comp. 1990, 26, 264–267. [Google Scholar] [CrossRef]
  97. Mizobuchi, S.; Shimidzu, N.; Katsuoka, M.; Adachi, K.; Miki, W. Antifouling substances against the mussel in an octocoral Dendronephthya sp. Nippon Suisan Gakk. 1993, 59, 1195–1199. [Google Scholar] [CrossRef]
  98. Matsumoto, T.; Shimizu, N.; Shigemoto, T.; Itoh, T.; Iida, T.; Nishioka, A. Isoaltion of 22-dehydro- campesterol from the seeds of Brassica juncea. Phytochemistry 1983, 22, 789–790. [Google Scholar] [CrossRef]
  99. Weldon, P.J.; Flachsbarth, B.; Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 2008, 25, 738–756. [Google Scholar] [CrossRef]
  100. Dzeha, T.; Jaspars, M.; Tabudravu, J. Clionasterol, a triterpenoid from the Kenyan marine green macroalga Halimeda macroloba. West. Indian Ocean J. Mar. Sci. 2003, 2, 157–161. [Google Scholar]
  101. Gallo, C.; Landi, S.; d’Ippolito, G.; Nuzzo, G.; Manzo, E.; Sardo, A.; Fontana, A. Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway. Sci. Rep. 2020, 10, 4204. [Google Scholar] [CrossRef]
  102. Kawamata, M.; Kon-ya, K.; Miki, W. Trigonelline, an antifouling substance isolated from an octocoral Dendronephthya sp. Fish. Sci. 1994, 60, 485–486. [Google Scholar] [CrossRef] [Green Version]
  103. Miki, W.; Kon-ya, K.; Mizobuchi, S. Biofouling and marine biotechnology: New antifoulants from marine invertebrates. J. Mar. Biotechnol. 1996, 4, 117–120. [Google Scholar]
  104. Wilsanand, V.; Wagh, A.B.; Bapuji, M. Antifouling activities of marine sedentary invertebrates on some macrofoulers. Indian J. Mar. Sci. 1999, 28, 280–284. [Google Scholar]
  105. Tomono, Y.; Hirota, H.; Imahara, Y.; Fusetani, N. Four new steroids from two octocorals. J. Nat. Prod. 1999, 62, 1538–1541. [Google Scholar] [CrossRef] [PubMed]
  106. Řezanka, T.; Dembitsky, V.M. Brominated oxylipins and oxylipin glycosides from Red Sea corals. Eur. J. Org. Chem. 2003, 309–316. [Google Scholar] [CrossRef]
  107. Kang, B.K.; Chung, M.J.; Park, Y.J. The crystal and molecular structure of cholesteryl formate. Bull. Korean Chem. Soc. 1985, 6, 333–337. [Google Scholar]
  108. Teng, J.I.; Kulig, M.J.; Smith, L.L.; Kan, G.; van Lier, J.E. Sterol metabolism. XX. Cholesterol 7β-hydroperoxide. J. Org. Chem. 1973, 38, 119–123. [Google Scholar] [CrossRef]
  109. de Riccardis, F.; Minale, L.; Iorizzi, M.; Debitus, C.; Lévi, C. Marine sterols. Side-chain-oxygenated sterols, possibly of abiotic origin, from the New Caledonian sponge Stelodoryx chlorophylla. J. Nat. Prod. 1993, 56, 282–287. [Google Scholar] [CrossRef]
  110. Notaro, G.; Piccialli, V.; Sica, D. New steroidal hydroxyketones and closely related diols from the marine sponge Cliona copiosa. J. Nat. Prod. 1992, 55, 1588–1594. [Google Scholar] [CrossRef]
  111. Shoppee, C.W.; Newman, B.C. Steroids. Part XXX. Some properties of the cholest-5-ene-3β,7ξ-diols and their esters. J. Chem. Soc. (C) 1968, 8, 981–983. [Google Scholar] [CrossRef]
  112. Kumar, V.; Amann, A.; Ourisson, G.; Luu, B. Stereospecific syntheses of 7β- and 7α-hydroxycholesterols. Synth. Commun. 1987, 17, 1279–1286. [Google Scholar] [CrossRef]
  113. Rizvi, S.Q.A.; Williams, J.R. Synthesis and carbon-13 nuclear magnetic resonance studies of Δ5 and saturated 4,4-disubstituted 3-ketosteroids. J. Org. Chem. 1981, 46, 1127–1132. [Google Scholar] [CrossRef]
  114. Parish, E.J.; Honda, H.; Chitrakorn, S.; Livant, P. A facile chemical synthesis of cholest-4-en-3-one. Carbon-13 nuclear magnetic resonacne spectral properties of cholest-4-en-3-one and cholest-5-en-3-one. Lipids 1991, 26, 675–677. [Google Scholar] [CrossRef]
  115. Wu, K.; Li, W.; Song, J.; Li, T. Production, purification, and identification of cholest-4-en-3-one produced by cholesterol oxidase from Rhodococcus sp. in aqueous/organic biphasic system. Biochem. Insights 2015, 8(S1), 1–8. [Google Scholar]
  116. Sheikh, Y.M.; Djerassi, C. Steroids from sponges. Tetrahedron 1974, 30, 4095–4103. [Google Scholar] [CrossRef]
  117. Guella, G.; Mancini, I.; Pietra, F. Isolation of ergosta-4,24-dien-3-one from both Astrophorida demosponges and Subantarctic hexactinellides. Comp. Biochem. Physiol. 1988, 90B, 113–115. [Google Scholar] [CrossRef]
  118. Wright, J.L.C.; McInnes, A.G.; Shimizu, S.; Smith, D.G.; Walter, J.A.; Idler, D.; Khalil, W. Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Can. J. Chem. 1978, 56, 1898–1903. [Google Scholar]
  119. Li, G.; Deng, Z.; Guan, H.; van Ofwegen, L.; Proksch, P.; Lin, W. Steroids from the soft coral Dendronephthya sp. Steroids 2005, 70, 13–18. [Google Scholar] [CrossRef]
  120. Ma, A.; Deng, Z.; van Ofwegen, L.; Bayer, M.; Proksch, P.; Lin, W. Dendronpholides A–R, cembranoid diterpenes from the Chinese soft coral Dendronephthya sp. J. Nat. Prod. 2008, 71, 1152–1160, (Correction in J. Nat. Prod. 2010, 73, 1026). [Google Scholar] [CrossRef]
  121. Anjaneyulu, A.S.R.; Rao, G.V.; Sagar, K.S.; Kumar, K.R.; Mohan, K.C. Sandensolide: A new dihydroxycembranolide from the soft coral, Sinularia sandensis Verseveldt of the Indian Ocean. Nat. Prod. Lett. 1995, 7, 183–190. [Google Scholar] [CrossRef]
  122. Anjaneyulu, A.S.R.; Sagar, K.S.; Rao, G.V. New cembranoid lactones from the Indian Ocean soft coral Sinularia flexibilis. J. Nat. Prod. 1997, 60, 9–12. [Google Scholar] [CrossRef]
  123. Hu, L.-C.; Su, J.-H.; Chiang, M.Y.-N.; Lu, M.-C.; Hwang, T.-L.; Chen, Y.-H.; Hu, W.-P.; Lin, N.-C.; Wang, W.-H.; Fang, L.-S.; et al. Flexibilins A–C, new cembrane-type diterpenoids from the Formosan soft coral, Sinularia flexibilis. Mar. Drugs 2013, 11, 1999–2012. [Google Scholar] [CrossRef] [Green Version]
  124. Chen, C.-T.; Kao, C.L.; Li, H.-T.; Chen, C.-Y. Chemical constituents of cultured soft coral Sinularia flexibilis. Chem. Nat. Comp. 2018, 54, 168–169. [Google Scholar] [CrossRef]
  125. Tursch, B.; Braekman, J.C.; Daloze, D.; Herin, M.; Karlsson, R.; Losman, D. Chemical studies of marine invertebrates–XI. Sinulariolide, a new cembranolide diterpene from the soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). Tetrahedron 1975, 31, 129–133. [Google Scholar] [CrossRef]
  126. Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Schönholzer, P.; Coll, J.C. Cembranoid constituents from an Australian collection of the soft coral Sinularia flexibilis. Aust. J. Chem. 1978, 31, 1817–1824. [Google Scholar] [CrossRef]
  127. Mori, K.; Suzuki, S.; Iguchi, K.; Yamada, Y. 8,11-Epoxy bridged cembranolide diterpene from the soft coral Sinularia flexibilis. Chem. Lett. 1983, 12, 1515–1516. [Google Scholar] [CrossRef]
  128. Wen, T.; Ding, Y.; Deng, Z.; van Ofwegen, L.; Proksch, P.; Lin, W. Sinulaflexiolides A–K, cembrane-type diterpenoids from the Chinese soft coral Sinularia flexibilis. J. Nat. Prod. 2008, 71, 1133–1144. [Google Scholar] [CrossRef]
  129. Michalek, K.; Bowden, B.F. A natural algacide from soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). J. Chem. Ecol. 1997, 23, 259–273. [Google Scholar] [CrossRef]
  130. Lo, K.-L.; Khalil, A.T.; Kuo, Y.-H.; Shen, Y.-C. Sinuladiterpenes A–F, new cembrane diterpenes from Sinularia flexibilis. Chem. Biodivers. 2009, 6, 2227–2235. [Google Scholar] [CrossRef]
  131. Xu, S.H.; Zeng, L.M. The identification of two new sterols from marine organism. Chin. Chem. Lett. 2000, 11, 531–534. [Google Scholar]
  132. Liao, X.; Xu, S.; Lin, H. Isolation and identification of two tetrahydroxylated sterols with cytotoxic activity. Chin. J. Org. Chem. 2010, 30, 749–752. [Google Scholar]
  133. Elkhayat, E.S.; Ibrahim, S.R.M.; Fouad, M.A.; Mohamed, G.A. Dendronephthols A–C, new sesquiterpenoids from the Red Sea soft coral Dendronephthya sp. Tetrahedron 2014, 70, 3822–3825. [Google Scholar] [CrossRef]
  134. Ioannou, E.; Abdel-Razik, A.F.; Zervou, M.; Christofidis, D.; Alexi, X.; Vagias, C.; Alexis, M.N.; Roussis, V. 5α,8α-Epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: Isolation and evaluation of their antiproliferative activity. Steroids 2009, 74, 73–80. [Google Scholar] [CrossRef]
  135. Huynh, T.-H.; Chen, P.-C.; Yang, S.-N.; Lin, F.-Y.; Su, T.-P.; Chen, L.-Y.; Peng, B.-R.; Hu, C.-C.; Chen, Y.-Y.; Wen, Z.-H.; et al. New 1,4-dienonesteroids from the octocoral Dendronephthya sp. Mar. Drugs 2019, 17, 530. [Google Scholar] [CrossRef] [Green Version]
  136. Gallina, C.; Remeo, A.; Tortorella, V.; D’Agnolo, G. Racemic deoxymycelianamide. Chem. Ind. 1966, 30, 1300–1301. [Google Scholar]
  137. Gallina, C.; Remeo, A.; Tortorella, V.; D’Agnolo, G. Synthesis of racemic deoxymycelianamide. Ann. Chim. 1968, 58, 280–285. [Google Scholar]
  138. Birch, A.J.; Donovan, F.W. Studies in relation to biosynthesis. I. Some possible routes to derivatives of orcinol and phloroglucinol. Aust. J. Chem. 1953, 6, 360–368. [Google Scholar] [CrossRef]
  139. Birch, A.J.; Massy-Westropp, R.A.; Rickards, R.W.; Smith, H. Studies in relation to biosynthesis. Part XIII. Griseofulvin. J. Chem. Soc. 1958, 360–365. [Google Scholar] [CrossRef]
  140. Tanabe, M.; Detre, G. The use of 13C-labeled acetate in biosynthetic studies. J. Am. Chem. Soc. 1966, 88, 4515–4517. [Google Scholar] [CrossRef]
  141. Harris, C.M.; Roberson, J.S.; Harris, T.M. Biosynthesis of griseofulvin. J. Am. Chem. Soc. 1976, 98, 5380–5386. [Google Scholar] [CrossRef]
  142. Cole, R.J.; Kirksey, J.W.; Holaday, C.E. Detection of griseofulvin and dechlorogriseofulvin by thin-layer chromatography and gas-liquid chromatography. Appl. Microbiol. 1970, 19, 106–108. [Google Scholar] [CrossRef]
  143. Jarvis, B.B.; Zhou, Y.; Jiang, J.; Wang, S.; Sorenson, W.G.; Hintikka, E.-L.; Nikulin, M.; Parikka, P.; Etzel, R.A.; Dearborn, D.G. Toxigenic molds in water-damaged buildings: Dechlorogriseofulvins from Memnoniella echinata. J. Nat. Prod. 1996, 59, 553–554. [Google Scholar] [CrossRef]
  144. MacMillan, J. Griseofulvin. Part VII. Dechlorogriseofulvin. J. Chem. Soc. 1953, 1697–1702. [Google Scholar] [CrossRef]
  145. Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin, W. Janthinolide A-B, two new 2,5-piperazinedione derivatives from the endophytic Penicillium janthinellum isolated from the soft coral Dendronephthya sp. Pharmazie 2006, 61, 1041–1044. [Google Scholar] [CrossRef]
  146. Itokawa, H.; Akita, Y.; Yamazaki, M. The indole derivatives isolated from the oil cakes of Camellia seeds. On the relation to the components of the fungus infecting the oil cakes. Yakugaku Zasshi 1973, 93, 1251–1252. [Google Scholar] [CrossRef] [Green Version]
  147. Casnati, G.; Pochini, P.; Ungaro, R. Neoechinulin: A new isoprenyl-indole metabolite from Aspergillus amstelodami. Gazz. Chim. Ital. 1973, 103, 141–151. [Google Scholar]
  148. Dossena, A.; Marchelli, R.; Pochini, A. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. J. Chem. Soc. Chem. Comm. 1974, 771–772. [Google Scholar] [CrossRef]
  149. Nagasawa, H.; Isogai, A.; Ikeda, K.; Sato, S.; Murakoshi, S.; Suzuki, A.; Tamura, S. Isolation and structure elucidation of a new indole metabolite from Aspergillus ruber. Agric. Biol. Chem. 1975, 39, 1901–1902. [Google Scholar] [CrossRef]
  150. Cardillo, R.; Fuganti, C.; Ghiringhelli, D.; Grasselli, P.; Gatti, G. Stereochemical course of the α,β-desaturation of L-tryptophan in the biosynthesis of cryptoechinuline A in Aspergillus amstelodami. J. Chem. Soc. Chem. Comm. 1975, 778–779. [Google Scholar] [CrossRef]
  151. Marchelli, R.; Dossena, A.; Casnati, G. Biosynthesis of neoechinulin by Aspergillus amstelodami from cyclo-L-[U-14C]alanyl-L-[5,7-3H2]tryptophyl. J. Chem. Soc. Chem. Comm. 1975, 779–780. [Google Scholar] [CrossRef]
  152. Marchelli, R.; Dossena, A.; Pochini, A.; Dradi, E. The structures of five new didehydropeptides related to neoechinulin, isolated from Aspergillus amstelodami. J. Chem. Soc. Perkin Trans. I 1977, 713–717. [Google Scholar] [CrossRef]
  153. Yagi, R.; Doi, M. Isolation of an antioxidative substance produced by Aspergillus repens. Biosci. Biotechnol. Biochem. 1999, 63, 932–933. [Google Scholar] [CrossRef]
  154. Li, Y.; Li, X.; Kim, S.-K.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem. Pharm. Bull. 2004, 52, 375–376. [Google Scholar] [CrossRef] [Green Version]
  155. Stipanovic, R.D.; Schroeder, H.W. Preechinulin, a metabolite of Aspergillus chevalieri. Trans. Br. Mycol. Soc. 1976, 66, 178–179. [Google Scholar] [CrossRef]
  156. Hamasaki, T.; Nagayama, K.; Hatsuda, Y. Structure of a new metabolite from Aspergillus chevalieri. Agric. Biol. Chem. 1976, 40, 203–205. [Google Scholar] [CrossRef]
  157. Nagasawa, H.; Isogai, A.; Suzuki, A.; Tamura, S. Structures of isoechinulins A, B and C, new indole metabolites from Aspergillus ruber. Tetrahedron Lett. 1976, 17, 1601–1604. [Google Scholar] [CrossRef]
  158. Fujimoto, H.; Fujimaki, T.; Okuyama, E.; Yamazaki, M. Immunomodulatory constituents from an Ascomycete, Microascus tardifaciens. Chem. Pharm. Bull. 1999, 47, 1426–1432. [Google Scholar] [CrossRef] [Green Version]
  159. Wang, W.-L.; Lu, Z.-Y.; Tao, H.-W.; Zhu, T.-J.; Fang, Y.-C.; Gu, Q.-Q.; Zhu, W.-M. Isoechinulin-type alkaloids, variecolorins A–L, from halotolerant Aspergillus variecolor. J. Nat. Prod. 2007, 70, 1558–1564. [Google Scholar] [CrossRef]
  160. Li, Y.; Li, X.; Kang, J.S.; Choi, H.D.; Son, B.W. New radical scavenging and ultraviolet-a protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. J. Antibiot. 2004, 57, 337–340. [Google Scholar] [CrossRef] [Green Version]
  161. Hamasaki, T.; Nagayama, K.; Hatsuda, Y. A new metabolite, L-alanyl-L-tryptophan anhydride from Aspergillus chevalieri. Agric. Biol. Chem. 1976, 40, 2487. [Google Scholar] [CrossRef]
  162. Sun, X.-P.; Xu, Y.; Cao, F.; Xu, R.-F.; Zhang, X.-L.; Wang, C.-Y. Isoechinulin-type alkaloids from a soft coral-derived fungus Nigrospora oryzae. Chem. Nat. Comp. 2014, 50, 1153–1155. [Google Scholar] [CrossRef]
Figure 1. Structures of isogosterones A–D (14).
Figure 1. Structures of isogosterones A–D (14).
Molecules 25 05957 g001
Figure 2. Structures of dendronesterols A (5) and B (6), (22E,24S)-24-methyl-cholesta-7,22-diene-3β, 5α,6β,9α-tetrol (7), (22E)-cholesta-7,22-diene-3β,5α,6β,9α-tetrol (8), and (22E)-24-norcholesta-7,22- diene-3β,5α,6β-triol (9).
Figure 2. Structures of dendronesterols A (5) and B (6), (22E,24S)-24-methyl-cholesta-7,22-diene-3β, 5α,6β,9α-tetrol (7), (22E)-cholesta-7,22-diene-3β,5α,6β,9α-tetrol (8), and (22E)-24-norcholesta-7,22- diene-3β,5α,6β-triol (9).
Molecules 25 05957 g002
Figure 3. Structures of dendronesterones A–C (1012) and cholest-1-ene-3,22-dione (13).
Figure 3. Structures of dendronesterones A–C (1012) and cholest-1-ene-3,22-dione (13).
Molecules 25 05957 g003
Figure 4. Structures of (±)-1-nonadecyloxy-2,3-propanediol (14) and (2S,3R,4E,8E)-N-hexadecanoyl- 2-amino-4,8-octadecadiene-1,3-diol (15), thymine (16), and uracil (17).
Figure 4. Structures of (±)-1-nonadecyloxy-2,3-propanediol (14) and (2S,3R,4E,8E)-N-hexadecanoyl- 2-amino-4,8-octadecadiene-1,3-diol (15), thymine (16), and uracil (17).
Molecules 25 05957 g004
Figure 5. Structures of (2S,3R,4E)-N-hexadecanoyl-2-amino-4-octadecane-1,3-diol (18), N-phenethyl -acetamide (19), cyclo-(Leu-Pro) (20), cyclo-(Ala-Pro) (21), cyclo-(Val-Pro) (22), 2,4-dichlorobenzonic acid (23), thymidine (24), 2′-deoxyuride (25), and cholesterol (26).
Figure 5. Structures of (2S,3R,4E)-N-hexadecanoyl-2-amino-4-octadecane-1,3-diol (18), N-phenethyl -acetamide (19), cyclo-(Leu-Pro) (20), cyclo-(Ala-Pro) (21), cyclo-(Val-Pro) (22), 2,4-dichlorobenzonic acid (23), thymidine (24), 2′-deoxyuride (25), and cholesterol (26).
Molecules 25 05957 g005
Figure 6. Structures of 3-oxocholest-1,22-dien-12β-ol (27) 3-oxocholest-1,4-dien-20β-ol (28), 3-oxo- cholest-1,4-dien-12β-ol (29), (20S)-20-hydroxyergosta-1,4,24-trien-3-one (30), 5α,8α-epidioxy- cholesta-6,22-dien-3β-ol (31), and 5-cholestene-3β,12β-diol (32).
Figure 6. Structures of 3-oxocholest-1,22-dien-12β-ol (27) 3-oxocholest-1,4-dien-20β-ol (28), 3-oxo- cholest-1,4-dien-12β-ol (29), (20S)-20-hydroxyergosta-1,4,24-trien-3-one (30), 5α,8α-epidioxy- cholesta-6,22-dien-3β-ol (31), and 5-cholestene-3β,12β-diol (32).
Molecules 25 05957 g006
Figure 7. Structures of 26,27-dinorergosta-5,22-dien-3β-ol (33), cholesta-5,22-dien-3β-ol (including 22-trans form 34 and 22-cis form 35), ergosta-5,22-dien-3β-ol (36), stigmasta-5,24-dien-3β-ol (= fucosterol) (37), stigmasta-5,22-dien-3β-ol (38), stigmasta-5-en-3β-ol (39), and 22,23-methylene- cholesterol (40).
Figure 7. Structures of 26,27-dinorergosta-5,22-dien-3β-ol (33), cholesta-5,22-dien-3β-ol (including 22-trans form 34 and 22-cis form 35), ergosta-5,22-dien-3β-ol (36), stigmasta-5,24-dien-3β-ol (= fucosterol) (37), stigmasta-5,22-dien-3β-ol (38), stigmasta-5-en-3β-ol (39), and 22,23-methylene- cholesterol (40).
Molecules 25 05957 g007
Figure 8. Structures of 7-dehydroerectasteroid F (41), 11α-acetoxyarmatinol A (42), 22,23-di- dehydroarmatinol A (43), 3-O-acetylhyrtiosterol (44), 24-methylene-5-cholesten-3β,7β-diol (45), 24- methylene-5-cholesten-3β,19-diol (46), 24-methylene-5-cholesten-3β,19-diol-7β-monoacetate (47), 5,6-epoxylitosterol (48), armatinol A (49), hyrtiosterol (50), (2β,3β,4α,5α,8β,11β)-4-methylergost-24 (28)-ene-2,3,8,11-tetrol (51), and erectasteroids C–F (5255).
Figure 8. Structures of 7-dehydroerectasteroid F (41), 11α-acetoxyarmatinol A (42), 22,23-di- dehydroarmatinol A (43), 3-O-acetylhyrtiosterol (44), 24-methylene-5-cholesten-3β,7β-diol (45), 24- methylene-5-cholesten-3β,19-diol (46), 24-methylene-5-cholesten-3β,19-diol-7β-monoacetate (47), 5,6-epoxylitosterol (48), armatinol A (49), hyrtiosterol (50), (2β,3β,4α,5α,8β,11β)-4-methylergost-24 (28)-ene-2,3,8,11-tetrol (51), and erectasteroids C–F (5255).
Molecules 25 05957 g008
Figure 9. Structures of griffinisterones A–I (5664) and griffinipregnone (65).
Figure 9. Structures of griffinisterones A–I (5664) and griffinipregnone (65).
Molecules 25 05957 g009
Figure 10. Structures of polychlorolipids 6669.
Figure 10. Structures of polychlorolipids 6669.
Molecules 25 05957 g010
Figure 11. Structures of dendrophen (70), dendrotriol (71), hexiol (72), 4-oxo-pentanoic acid (73), 2- methyl-acrylic acid 2-diethylaminoethyl ester (74), juniper camphor (75), and 2-octadecanone (76).
Figure 11. Structures of dendrophen (70), dendrotriol (71), hexiol (72), 4-oxo-pentanoic acid (73), 2- methyl-acrylic acid 2-diethylaminoethyl ester (74), juniper camphor (75), and 2-octadecanone (76).
Molecules 25 05957 g011
Figure 12. Structures of 5α-pregn-20-en-3,6-dione (77), 5α-pregn-20-en-3β-ol (78), 1,4,20-pregna- trien-3-one (79), 15β-acetoxypregna-1,4,20-trien-3-one (80), 5α-cholestan-3,6-dione (81), and 5α- cholest-22-en-3,6-dione (82).
Figure 12. Structures of 5α-pregn-20-en-3,6-dione (77), 5α-pregn-20-en-3β-ol (78), 1,4,20-pregna- trien-3-one (79), 15β-acetoxypregna-1,4,20-trien-3-one (80), 5α-cholestan-3,6-dione (81), and 5α- cholest-22-en-3,6-dione (82).
Molecules 25 05957 g012
Figure 13. Structures of dendronephthyones A–C (8385) and suberosanone B (86).
Figure 13. Structures of dendronephthyones A–C (8385) and suberosanone B (86).
Molecules 25 05957 g013
Figure 14. Structure of cholesta-5,24-dien-3β-ol (88).
Figure 14. Structure of cholesta-5,24-dien-3β-ol (88).
Molecules 25 05957 g014
Figure 15. Structures of 2α,8β,13-triacetoxycapnell-9-ene-10α-ol (89), 3α,8β,14-triacetoxy- capnell-9-ene-10α-ol (90), 3α,14-diacetoxycapnell-9-ene-8β,10α-diol (91), 3α,8β-diacetoxy- capnell-9-ene-10α-ol (92), 3α,4α-epoxyprecapnell-10-ene (93), capnell-9-ene-8β,10α-diol (94), and 8β-acetoxycapnell-9-ene-10α-ol (95).
Figure 15. Structures of 2α,8β,13-triacetoxycapnell-9-ene-10α-ol (89), 3α,8β,14-triacetoxy- capnell-9-ene-10α-ol (90), 3α,14-diacetoxycapnell-9-ene-8β,10α-diol (91), 3α,8β-diacetoxy- capnell-9-ene-10α-ol (92), 3α,4α-epoxyprecapnell-10-ene (93), capnell-9-ene-8β,10α-diol (94), and 8β-acetoxycapnell-9-ene-10α-ol (95).
Molecules 25 05957 g015
Figure 16. Structures of (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol (96), (22E)-19,24-dinor- cholesta-1,3,5,22-tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5,22-tetraen-3-ol (98), 24-methylene-19-norcholesta-1,3,5,22-tetraen-3-ol (99), (22E,24S)-24-methyl-19-norcholesta-1,3,5 (10),22-tetraen-3-ol (100), (22E,24R)-24-methyl-19-norcholesta-1,3,5,22-tetraen-3-ol (101), 24- methylenecholesta-1,4,22-trien-3-one (102), (22E)-24-cholesta-1,4,22-trien-3-one (103), methyl spongoate (104), and 19-norcholesta-1,3,5-trien-3-ol (105).
Figure 16. Structures of (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol (96), (22E)-19,24-dinor- cholesta-1,3,5,22-tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5,22-tetraen-3-ol (98), 24-methylene-19-norcholesta-1,3,5,22-tetraen-3-ol (99), (22E,24S)-24-methyl-19-norcholesta-1,3,5 (10),22-tetraen-3-ol (100), (22E,24R)-24-methyl-19-norcholesta-1,3,5,22-tetraen-3-ol (101), 24- methylenecholesta-1,4,22-trien-3-one (102), (22E)-24-cholesta-1,4,22-trien-3-one (103), methyl spongoate (104), and 19-norcholesta-1,3,5-trien-3-ol (105).
Molecules 25 05957 g016
Figure 17. Structures of pincsterol (24S), brassicasterol (24R) (106), β-cholestanol (107), β-sitosterol (39), and clionasterol (108).
Figure 17. Structures of pincsterol (24S), brassicasterol (24R) (106), β-cholestanol (107), β-sitosterol (39), and clionasterol (108).
Molecules 25 05957 g017
Figure 18. Structure of trigonelline (109).
Figure 18. Structure of trigonelline (109).
Molecules 25 05957 g018
Figure 19. Structure of methyl 3-oxochola-4,22-dien-24-oate (110).
Figure 19. Structure of methyl 3-oxochola-4,22-dien-24-oate (110).
Molecules 25 05957 g019
Figure 20. Structures of oxylipins 112114.
Figure 20. Structures of oxylipins 112114.
Molecules 25 05957 g020
Figure 21. Structures of (22E)-3-O-β-formylcholest-5,22-diene (115), (22E)-3-O-β-formyl-24-methyl- cholest-5,22-diene (116), 2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5-ene-4-one (117), (22E)-2- ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5,22-diene-4-one (118), (22E)-2-ethoxycarbonyl-2-β- hydroxy-24-methyl-A-nor-cholest-5,22-diene-4-one (119), 3-β-formyloxycholest-5-ene (120), 3β,7β- dihydroxycholest-5-ene (121), (22E)-3β,7α-dihydroxy-cholest-5,22-diene (122), 3β,7α-dihydroxy-24- methylene-cholest-5-ene (123), 3β,7α-dihydroxy-24-methyl-cholest-5,22-diene (124), 3β,7α- dihydroxy-cholest-5-ene (125), cholest-4-ene-3-one (126), 24-methylene-cholest-4-ene-3-one (127), (22E)-cholest-4,22-dien-3-one (128), and (22E)-24-methyl-cholest-4,22-dien-3-one (129).
Figure 21. Structures of (22E)-3-O-β-formylcholest-5,22-diene (115), (22E)-3-O-β-formyl-24-methyl- cholest-5,22-diene (116), 2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5-ene-4-one (117), (22E)-2- ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5,22-diene-4-one (118), (22E)-2-ethoxycarbonyl-2-β- hydroxy-24-methyl-A-nor-cholest-5,22-diene-4-one (119), 3-β-formyloxycholest-5-ene (120), 3β,7β- dihydroxycholest-5-ene (121), (22E)-3β,7α-dihydroxy-cholest-5,22-diene (122), 3β,7α-dihydroxy-24- methylene-cholest-5-ene (123), 3β,7α-dihydroxy-24-methyl-cholest-5,22-diene (124), 3β,7α- dihydroxy-cholest-5-ene (125), cholest-4-ene-3-one (126), 24-methylene-cholest-4-ene-3-one (127), (22E)-cholest-4,22-dien-3-one (128), and (22E)-24-methyl-cholest-4,22-dien-3-one (129).
Molecules 25 05957 g021
Figure 22. Structures of dendronpholides C–F (130133), I–R (134143), (−)-sandensolide (144), 11-episinulariolide (145) and sinulaflexiolides E, F, J, K (146149).
Figure 22. Structures of dendronpholides C–F (130133), I–R (134143), (−)-sandensolide (144), 11-episinulariolide (145) and sinulaflexiolides E, F, J, K (146149).
Molecules 25 05957 g022
Figure 23. Structures of 23-nor-ergost-24-ene-3β,5α,6β,7β-tetrol (150) and ergost-24-ene-3β, 6β,9α,19-tetrol (151).
Figure 23. Structures of 23-nor-ergost-24-ene-3β,5α,6β,7β-tetrol (150) and ergost-24-ene-3β, 6β,9α,19-tetrol (151).
Molecules 25 05957 g023
Figure 24. Structures of dendronephthols A–C (152154).
Figure 24. Structures of dendronephthols A–C (152154).
Molecules 25 05957 g024
Figure 25. Structures of dendronesterones D (155) and E (156), 5α,8α-epidioxy-24(S)-methyl- cholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy-24(S)-methylcholesta-6,9,22-trien-3β-ol (158).
Figure 25. Structures of dendronesterones D (155) and E (156), 5α,8α-epidioxy-24(S)-methyl- cholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy-24(S)-methylcholesta-6,9,22-trien-3β-ol (158).
Molecules 25 05957 g025
Figure 26. Structures of janthinolides A (159), B (160), deoxymycelianamide (161), griseofulvin (162), and dechlorogriseofulvin (163).
Figure 26. Structures of janthinolides A (159), B (160), deoxymycelianamide (161), griseofulvin (162), and dechlorogriseofulvin (163).
Molecules 25 05957 g026
Figure 27. Structures of neoechinulin A (164), preechinulin (165), isoechinulin A (166), tardioxopiperazine A (167), variecolorin L (168), dihydroxyisoechinulin A (169), and L-alanyl-L- tryptophan anhydride (170).
Figure 27. Structures of neoechinulin A (164), preechinulin (165), isoechinulin A (166), tardioxopiperazine A (167), variecolorin L (168), dihydroxyisoechinulin A (169), and L-alanyl-L- tryptophan anhydride (170).
Molecules 25 05957 g027
Figure 28. Biomedical activities of natural products from Dendronephthya spp.
Figure 28. Biomedical activities of natural products from Dendronephthya spp.
Molecules 25 05957 g028
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chen, Y.-H.; Chang, Y.-C.; Chen, Y.-H.; Zheng, L.-G.; Huang, P.-C.; Huynh, T.-H.; Peng, B.-R.; Chen, Y.-Y.; Wu, Y.-J.; Fang, L.-S.; et al. Natural Products from Octocorals of the Genus Dendronephthya (Family Nephtheidae). Molecules 2020, 25, 5957. https://doi.org/10.3390/molecules25245957

AMA Style

Chen Y-H, Chang Y-C, Chen Y-H, Zheng L-G, Huang P-C, Huynh T-H, Peng B-R, Chen Y-Y, Wu Y-J, Fang L-S, et al. Natural Products from Octocorals of the Genus Dendronephthya (Family Nephtheidae). Molecules. 2020; 25(24):5957. https://doi.org/10.3390/molecules25245957

Chicago/Turabian Style

Chen, Yung-Husan, Yu-Chia Chang, Yu-Hsin Chen, Li-Guo Zheng, Pin-Chang Huang, Thanh-Hao Huynh, Bo-Rong Peng, You-Ying Chen, Yu-Jen Wu, Lee-Shing Fang, and et al. 2020. "Natural Products from Octocorals of the Genus Dendronephthya (Family Nephtheidae)" Molecules 25, no. 24: 5957. https://doi.org/10.3390/molecules25245957

Article Metrics

Back to TopTop