Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolites Isolation
2.2. Structure Identification
2.3. Inhibitory Effects on NO Production
2.4. Inhibitory Effects on the Production of Inducible Nitric Oxide Synthase (iNOS), Cyclooxygenase-2 (COX-2), and Pro-Inflammatory Factors
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Extraction and Isolation
3.3.1. Talanaphthoquinone A (1)
3.3.2. Talanaphthoquinone B (2)
3.4. Measurement of NO Production and Cell Viability
3.5. Real-Time PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Heller, R.A.; Schena, M.; Chai, A.; Shalon, D.; Bedilion, T.; Gilmore, J.; Woolley, D.E.; Davis, R.W. Discovery and analysis of inflammatory disease-related genes using cdna microarrays. Proc. Natl. Acad. Sci. USA 1997, 94, 2150–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.S.; Tsai, H.L.; Chau, L.Y. Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-delta 12, 14-prostaglandin J2. J. Biol. Chem. 2003, 278, 19325–19330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesel, P.L.; Foster, C.; Pellacani, A.; Layne, M.D.; Hsieh, C.M.; Huggins, G.S.; Strauss, P.; Yet, S.F.; Perrella, M.A. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. J. Biol. Chem. 2000, 275, 24840–24846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, A.M.S.; Abimael, D.R.; Taglialatelascafati, O. Marine pharmacology in 2012–2013: Marine compounds with Antibacterial, antidiabetic, antifungal, anti-Inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 2510–2573. [Google Scholar]
- Cui, H.; Liu, Y.; Li, J.; Huang, X.; Yan, T.; Cao, W.; Liu, H.; Long, Y.; She, Z. Diaporindenes A−D: Four unusual 2, 3-dihydro-1H-indene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. J. Org. Chem. 2018, 83, 11804–11813. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar. Drugs 2016, 14, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Rosario, N.; Antonio, T. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37–71. [Google Scholar]
- Zhang, L.; Zhang, W.; Liu, J.; Hu, J. C− F bond cleavage by intramolecular SN2 reaction of alkyl fluorides with O-and N-Nucleophiles. J. Org. Chem. 2009, 74, 2850–2853. [Google Scholar] [CrossRef]
- MangasSánchez, J.J.; Busto, E.E.; Gotor-Fernández, V.V.; Gotor, V.V. Straightforward synthesis of enantiopure 2, 3-dihydrobenzofurans by a sequential stereoselective biotransformation and chemical intramolecular cyclization. Org. Lett. 2010, 12, 3498–3501. [Google Scholar] [CrossRef]
- Kimura, Y.; Shimada, A.; Nakajima, H.; Hamasaki, T. Structures of naphthoquinones produced by the fungus, Fusarium sp., and their biological activity toward pollen germination. Agric. Biol. Chem. 1988, 52, 1253–1259. [Google Scholar] [CrossRef]
- Baker, R.A.; Tatum, J.H.; Nemec, S. Antimicrobial activity of naphthoquinones from Fusaria. Mycopathologia 1990, 111, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ding, J.; Ding, K.; Chen, D.; Shan, C.; Mei, G. Phomonaphthalenone A: A novel dihydro-naphthalenone with anti-HIV activity from Phomopsis sp. HCCB04730. Phytochem. Lett. 2013, 6, 257–260. [Google Scholar] [CrossRef]
- Medentsev, A.G.; Akimenko, V.K. Mechanism of phytotoxic action of naphthoquinone pigments of the fungus Fusarium decemcellulare. Phytochemistry 1992, 31, 77–79. [Google Scholar] [CrossRef]
- Xia, X.; Liu, X.; Koo, D.C.; Sun, Z.; Shim, S. Chemical constituents of Fusarium sp. fungus associated with sea cucumbers. Chem. Nat. Com. 2014, 50, 1103–1105. [Google Scholar] [CrossRef]
- Moore, R.E.; Singh, H.; Chang, C.W.J.; Scheuer, P.J. Polyhydroxy naphthoquinones: Preparation and hydrolysis of methoxyl derivatives. Tetrahedron 1967, 23, 3271–3305. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, C.; Zheng, Z. New polyketides isolated from Botryosphaeria australis strain ZJ12-1A. Helv. Chim. Acta 2011, 94, 897–902. [Google Scholar] [CrossRef]
- Poch, G.K.; Gloer, J.B.; Shearer, C.A. New bioactive metabolites from a freshwater isolate of the fungus Kirschsteiniothelia sp. J. Nat. Prod. 1992, 55, 1093–1099. [Google Scholar] [CrossRef]
- Sun, R.; Gao, Y.; Shen, K.; Xu, Y.; Wang, C.; Liu, H. Antimicrobial metabolites from the aquatic fungus Delitschia corticola. Phytochem. Lett. 2011, 4, 101–105. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Liu, H.; Pan, Y.; Li, J.; Liu, L.; She, Z. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Mar. Drugs 2018, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Shao, C.; Gan, L.; Wang, M.; Wang, C. Chromone derivatives from a sponge-serived strain of the fungus Corynespora cassiicola. J. Nat. Prod. 2015, 78, 286–293. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Smedsgaard, J. Fungal metabolite screening: Database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chrom. A 2003, 1002, 111–136. [Google Scholar] [CrossRef]
- Arsenault, G.P. Fungal metabolites—III: Quinones from fusarium solani D2 purple and structure of (+)-solaniol. Tetrahedron 1968, 24, 4745–4749. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Xia, G. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J. Nat. Prod. 2015, 78, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Lee, J.M.; Jun, S.H.; Lee, S.H.; Kim, N.W.; Lee, J.H.; Ko, N.Y.; Mun, S.H.; Kim, B.K.; Lim, B.O. The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 2007, 112, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Nishiumi, S.; Nishida, M.; Hirai, M.; Azuma, T.; Yoshida, H.; Mizushina, Y.; Yoshida, M. Effects of quinone derivatives, such as 1, 4-naphthoquinone, on DNA polymerase inhibition and anti-inflammatory action. Med. Chem. 2011, 7, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Fathy, H.M.; Aboushoer, M.I.; Baraka, A.; Abdel-Kader, M.S.; Omar, A.A. A New Naphthoquinone with Anti-inflammatory Activity from an egyptian collection of echiochilon fruticosum. Nat. Prod. Scien. 2009, 15, 22–26. [Google Scholar]
Sample Availability: Not available. |
Position | 1 | 2 | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 164.2, C | - | 190.1, C | - |
2 | 106.1, C | 6.63, d (2.5) | 109.2, CH | 6.07, s |
3 | 165.9, C | - | 161.4, C | - |
4 | 107.8, C | 7.17, d (2.5) | 177.6, C | - |
4a | 133.7, C | - | 109.1, C | - |
5 | 185.2, C | - | 155.0, C | - |
6 | 144.6, C | - | 139.0, C | - |
7 | 145.7, C | - | 134.2, C | - |
8 | 188.6, C | - | 157.3, C | - |
8a | 109.7, C | - | 110.3, C | - |
9 | 36.8, CH2 | 2.81, s 2.80, d (1.7) | 29.9, CH2 | 3.04, dd (7.1,16.6); 3.20, dd (9.4,17.0) |
10 | 67.9, CH | 4.04, dd (11.9, 6.0) | 86.2, CH | 5.15, m |
11 | 24.4, CH3 | 1.31, d (6.2) | 64.5, CH2 | 3.76, d (8.6); 4.02, d (12.7) |
12 | 12.9, CH3 | 2.21, s | 13.3, CH3 | 2.25, s |
13 | 56.1, CH3 | 3.9, s | 56.7, CH3 | 3.88, s |
1-OH | - | 12.38, s | - | 13.47, s |
Compounds | IC50 (μM) | CC50 (μM) a | SI b |
---|---|---|---|
1 | 3.9 ± 0.5 | 30.7 ± 0.5 | 7.9 |
2 | 49.7 ± 1.5 | - | |
3 | 16.0 ± 0.2 | - | |
4 | 22.6 ± 0.5 | - | |
5 | 11.2 ± 0.3 | - | |
6 | 5.2 ± 0.1 | - | |
7 | 14.4 ± 0.6 | 51.4 ± 1.5 | 3.6 |
8 | 7.7 ± 0.3 | - | |
9 | 1.7 ± 0.2 | 50.3 ± 1.5 | 29.6 |
10 | 7.5 ± 0.2 | 15.8 ± 0.4 | 2.1 |
11 | 15.5 ± 0.6 | 59.2 ± 1.5 | 3.8 |
12 | 5.6 ± 0.3 | 48.4 ± 1.3 | 8.6 |
Indomethacin c | 26.3 ± 0.6 |
Primer | Primer Sequence (5′ to 3′) | |
---|---|---|
iNOS | Forward | GTCTTTGACGCTCGGAACTGTAG |
Reversed | TGAAGTCATGTTTGCCGTCACT | |
COX-2 | Forward | GATGACTGCCCAACTCCC |
Reversed | AACCCAGGTCCTCGCTTA | |
TNF-α | Forward | TGGCTGCTGAAAAGACACATGT |
Reversed | CCACCAGACGTTCTGCTGTCTAG | |
IL-1β | Forward | AGTTGACGGACCCCAAAAG |
Reversed | AGCTGGATGCTCTCATCAGG | |
IL-6 | Forward | TTCCATCCAGTTGCCTTCTTG |
Reversed | GGGAGTGGTATCCTCTGTGAAGTC | |
GADPH | Forward | TGTGTCCGTCGTGGATCTGA |
Reversed | TTGCTGTTGAAGTCGCAGGAG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yan, C.; Li, C.; You, T.; She, Z. Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009. Molecules 2020, 25, 576. https://doi.org/10.3390/molecules25030576
Liu H, Yan C, Li C, You T, She Z. Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009. Molecules. 2020; 25(3):576. https://doi.org/10.3390/molecules25030576
Chicago/Turabian StyleLiu, Hongju, Chong Yan, Changqun Li, Tingting You, and Zhigang She. 2020. "Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009" Molecules 25, no. 3: 576. https://doi.org/10.3390/molecules25030576
APA StyleLiu, H., Yan, C., Li, C., You, T., & She, Z. (2020). Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009. Molecules, 25(3), 576. https://doi.org/10.3390/molecules25030576