Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge
Abstract
:1. Introduction
2. Results
2.1. Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge
2.2. Naproxen Biodegradation in the Trickling Filters
2.3. Colonization of the Loofah Sponges
2.4. Phylogenetic Characterization of the TF Microbial Population
3. Discussion
3.1. Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge
3.2. Naproxen Biodegradation in the Trickling Filters
3.3. Colonization of the Loofah Sponges
3.4. Phylogenetic Characterization of the TF Microbial Population
4. Materials and Methods
4.1. Immobilization Optimisation and Procedure
4.2. Configuration and Operational Conditions of the Trickling Filters (TFs)
4.3. Naproxen Biodegradation Experiments
4.4. Biofilm Analysis Using Scanning Electron Microscopy
4.5. Phylogenetic Characterization of the Microbial Population in the TFs
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Parrella, A.; Previtera, L.; Rubino, M. Ecotoxicity of naproxen and its phototransformation products. Sci. Total. Environ. 2005, 348, 93–101. [Google Scholar] [CrossRef]
- Xia, S.; Li, J.; Wang, R. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol. Eng. 2008, 32, 256–262. [Google Scholar] [CrossRef]
- Ma, F.; Guo, J.B.; Zhao, L.J.; Chang, C.C.; Cui, D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol. 2009, 100, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Dzionek, A.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Adamczyk-Habrajska, M.; Guzik, U. Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Van Veen, J.A.; van Overbeek, L.S.; van Elsas, J.D. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 1997, 61, 121–135. Available online: https://mmbr.asm.org/content/61/2/121.long (accessed on 23 January 2020). [CrossRef]
- Marchlewicz, A.; Domaradzka, D.; Guzik, U.; Wojcieszyńska, D. Bacillus thuringiensis B1(2015b) is a Gram- positive bacteria able to degrade naproxen and ibuprofen. Water Air Soil Poll 2016, 227, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lereclus, D.; Lecadet, M.M.; Ribier, J.; Dedonder, R. Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 1982, 186, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef]
- Bayat, Z.; Hassanshahian, M.; Cappello, S. Immobilization of microbes for bioremediation of crude oil polluted environments: A mini review. Open Microbiol. J. 2015, 9, 48–54. [Google Scholar]
- Górny, D.; Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. A new pathway for naproxen utilisation by Bacillus thuringiensis B1(2015b) and its decomposition in the presence of organic and inorganic contaminants. J. Environ. Manage. 2019, 239, 1–7. [Google Scholar] [CrossRef]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Husmark, U.; Rönner, U. Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions. J. Appl. Microbiol. 1990, 69, 557–562. [Google Scholar] [CrossRef]
- Shemesh, M.; Chai, Y. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via the histidine kinase KinD signaling. J. Bacteriol. 2013, 195, 2747–2754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Setlow, P. Regulation of phosphoglycerate phosphomutase in developing forespores and dormant and germinated spores of Bacillus megaterium by the level of free manganous ions. J. Bacteriol. 1979, 139, 889–898. Available online: https://jb.asm.org/content/139/3/889.long (accessed on 23 January 2020). [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, D.; Sen, U.; Zapf, J.; Varughese, K.I. Metals in the sporulation phosphorelay: Manganese binding by the response regulator Spo0F. Acta Crystallogr. D 2004, 60, 638–645. [Google Scholar] [CrossRef]
- Mhatre, E.; Troszok, A.; Gallegos-Monterrosa, R.; Lindstädt, S.; Hölscher, T.; Kuipers, O.P.; Kovács, Á.T. The impact of manganese on biofilm development of Bacillus subtilis. Microbiology 2016, 162, 1468–1478. [Google Scholar] [CrossRef]
- Morikawa, M.; Kagihiro, S.; Haruki, M.; Takano, K.; Branda, S.; Kolter, R.; Kanaya, S. Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology 2006, 152, 2801–2807. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, J.; de Toledo, R.A.; Shim, H. Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilised with Phanerochaete chrysosporium under non-sterile conditions. Bioresour. Technol. 2015, 197, 465–474. [Google Scholar] [CrossRef]
- Naz, I.; Saroj, D.P.; Mumtaz, S.; Ali, N.; Ahmed, S. Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environ. Technol. 2015, 36, 424–434. [Google Scholar] [CrossRef]
- Pérez, M.C.; Álvarez-Hornos, F.J.; Engesser, K.H.; Dobslaw, D.; Gabaldón, C. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam. New Biotechnol. 2016, 33, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Yu, Y.; Xu, R.; Wu, Z. Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers. Biochem. Eng. J. 2016, 106, 87–96. [Google Scholar] [CrossRef]
- Sharifnia, S.; Khadivi, M.A.; Shojaeimehr, T.; Shavisi, Y. Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA). J. Saudi Chem. Soc. 2016, 20, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszyńska, D.; Domaradzka, D.; Hupert-Kocurek, K.; Guzik, U. Bacterial degradation of naproxen–Undisclosed pollutant in the environment. J. Environ. Manage. 2014, 145, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Byss, M.; Elhottová, D.; Tříska, J.; Baldrian, P. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere 2008, 73, 1518–1523. [Google Scholar] [CrossRef]
- Mechichi, T.; Patel, B.K.; Sayadi, S. Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate-reducing bacterium Thauera sp. strain Cin3, 4. Int. Biodeter. Biodegr. 2005, 56, 224–230. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.K.; Periasamy, S.; Mukherjee, M.; Xie, C.; Kjelleberg, S.; Rice, S.A. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014, 8, 894–907. [Google Scholar] [CrossRef]
- Grenni, P.; Patrolecco, L.; Ademollo, N.; Di Lenola, M.; Caracciolo, A.B. Capability of the natural microbial community in a river water ecosystem to degrade the drug naproxen. Environ. Sci. Pollut. R. 2014, 21, 13470–13479. [Google Scholar] [CrossRef]
- Wang, S.; Gunsch, C.K. Effects of selected pharmaceutically active compounds on the ammonia oxidizing bacterium Nitrosomonas europaea. Chemosphere 2011, 82, 565–572. [Google Scholar] [CrossRef]
- Kosjek, T.; Heath, E.; Kompare, B. Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal. Bioanal. Chem. 2007, 387, 1379–1387. [Google Scholar] [CrossRef]
- Garzón-Zúñiga, M.A.; Lessard, P.; Buelna, G. Determination of the hydraulic residence time in a trickling biofilter filled with organic matter. Environ. Technol. 2003, 24, 605–614. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Płociniczak, T.; Sinkkonen, A.; Romantschuk, M.; Piotrowska-Seget, Z. Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl. Soil Ecol. 2013, 63, 1–7. [Google Scholar] [CrossRef]
- Anderson, I.C.; Campbell, C.D.; Prosser, J.I. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ. Microbiol. 2003, 5, 36–47. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not Available. |
Development Stage | Dry Biofilm Mass [mg] | Fluorescein Concentration [μg·mL−1] | Total Enzymatic Activity [μg·g Dry Mass−1·h−1] |
---|---|---|---|
Before optimization | 8.3 ± 0.9 | 4.56 ± 0.48 | 532.77 ± 39.09 |
After optimization | 28 ± 3.5 | 19.07 ± 1.06 | 709.14 ± 40.60 |
Microflora Imhoff | Trickling Filter I0 | Trickling Filter | Loofah Sponges | ||||||
---|---|---|---|---|---|---|---|---|---|
M | B | T | M | B | T | M | B | ||
16S rDNA | 2.164 | 1.039 | 1.386 | 2.025 | 2.307 | 2.253 | 1.886 | 1.791 | 2.342 |
18S rDNA | 2.686 | 2.761 | 2.043 | 2.564 | 2.780 | 2.718 | - | 2.800 | 2.841 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzionek, A.; Wojcieszyńska, D.; Adamczyk-Habrajska, M.; Guzik, U. Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules 2020, 25, 872. https://doi.org/10.3390/molecules25040872
Dzionek A, Wojcieszyńska D, Adamczyk-Habrajska M, Guzik U. Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules. 2020; 25(4):872. https://doi.org/10.3390/molecules25040872
Chicago/Turabian StyleDzionek, Anna, Danuta Wojcieszyńska, Małgorzata Adamczyk-Habrajska, and Urszula Guzik. 2020. "Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge" Molecules 25, no. 4: 872. https://doi.org/10.3390/molecules25040872
APA StyleDzionek, A., Wojcieszyńska, D., Adamczyk-Habrajska, M., & Guzik, U. (2020). Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules, 25(4), 872. https://doi.org/10.3390/molecules25040872