Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method
Abstract
:1. Introduction
2. Results
2.1. Identification of Peptides Specifically Binding to Primary Rat Endothelial Cells
2.2. High-Resolution Mass Spectrometry Analysis and LC–MS/MS Analysis
2.3. Endothelial Cytotoxicity and Permeability of Peptides across In Vitro Blood–Brain Barrier (BBB) Model
2.4. Internalization of Peptides into Endothelial Cells
3. Discussion
4. Materials and Methods
4.1. Cultivation of SH-SY5Y Neuroblastoma Cell Line
4.2. Isolation and cultivation of rat primary glial culture
4.3. Isolation and Cultivation of Primary Rat Brain Endothelial Cells: Development of an in Vitro BBB Model
4.4. Media and Solutions
4.5. Peptide Standards
4.6. Screening of Phage Display Library Using Primary Rat Brain Endothelial Cells
4.7. Permeability of Endothelium to Lucifer Yellow
4.8. Immunocytochemistry
4.9. Quantification of Peptide Transport across in Vitro BBB by Mass Spectrometry
4.10. High-Resolution Mass Spectrometry Analysis of Peptides
4.11. Toxicity Analysis (Cell Viability Measurement)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbott, N.J. Dynamics of cns barriers: Evolution, differentiation, and modulation. Cell. Mol. Neurobiol. 2005, 25, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. The blood–brain barrier: Bottleneck in brain drug development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Herve, F.; Ghinea, N.; Scherrmann, J.M. Cns delivery via adsorptive transcytosis. AAPS J. 2008, 10, 455–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood-tumour barrier in brain tumours and metastases. Nature Rev. Cancer 2019. [Google Scholar] [CrossRef]
- Gabathuler, R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 2010, 37, 48–57. [Google Scholar] [CrossRef]
- Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc. Natl. Acad. Sci. USA 1991, 88, 4771–4775. [Google Scholar] [CrossRef] [Green Version]
- Jefferies, W.A.; Brandon, M.R.; Hunt, S.V.; Williams, A.F.; Gatter, K.C.; Mason, D.Y. Transferrin receptor on endothelium of brain capillaries. Nature 1984, 312, 162–163. [Google Scholar] [CrossRef]
- Kissel, K.; Hamm, S.; Schulz, M.; Vecchi, A.; Garlanda, C.; Engelhardt, B. Immunohistochemical localization of the murine transferrin receptor (tfr) on blood-tissue barriers using a novel anti-tfr monoclonal antibody. Histochem. Cell Biol. 1998, 110, 63–72. [Google Scholar] [CrossRef]
- Wu, D.; Pardridge, W.M. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood–brain barrier drug delivery system. J. Pharmacol. Exp. Ther. 1996, 279, 77–83. [Google Scholar]
- Boado, R.J.; Zhang, Y.; Zhang, Y.; Pardridge, W.M. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol. Bioeng. 2007, 96, 381–391. [Google Scholar] [CrossRef]
- Pardridge, W.M. Delivery of biologics across the blood–brain barrier with molecular trojan horse technology. BioDrugs 2017, 31, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yang, J.; Pardridge, W.M. Drug targeting of a peptide radiopharmaceutical through the primate blood–brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J. Clin. Invest. 1997, 100, 1804–1812. [Google Scholar] [CrossRef] [PubMed]
- Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G. Human blood–brain barrier insulin-like growth factor receptor. Metab. Clin. Exp. 1988, 37, 136–140. [Google Scholar] [CrossRef]
- Nedelkov, D.; Nelson, R.W.; Kiernan, U.A.; Niederkofler, E.E.; Tubbs, K.A. Detection of bound and free igf-1 and igf-2 in human plasma via biomolecular interaction analysis mass spectrometry. FEBS Lett. 2003, 536, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Urayama, A.; Grubb, J.H.; Sly, W.S.; Banks, W.A. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood–brain barrier. Proc. Natl. Acad. Sci. USA 2004, 101, 12658–12663. [Google Scholar] [CrossRef] [Green Version]
- Demeule, M.; Currie, J.C.; Bertrand, Y.; Che, C.; Nguyen, T.; Regina, A.; Gabathuler, R.; Castaigne, J.P.; Beliveau, R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem. 2008, 106, 1534–1544. [Google Scholar] [CrossRef]
- Demeule, M.; Poirier, J.; Jodoin, J.; Bertrand, Y.; Desrosiers, R.R.; Dagenais, C.; Nguyen, T.; Lanthier, J.; Gabathuler, R.; Kennard, M.; et al. High transcytosis of melanotransferrin (p97) across the blood–brain barrier. J. Neurochem. 2002, 83, 924–933. [Google Scholar] [CrossRef]
- Li, F.Q.; Sempowski, G.D.; McKenna, S.E.; Laskowitz, D.T.; Colton, C.A.; Vitek, M.P. Apolipoprotein e-derived peptides ameliorate clinical disability and inflammatory infiltrates into the spinal cord in a murine model of multiple sclerosis. J. Pharmacol. Exp. Ther. 2006, 318, 956–965. [Google Scholar] [CrossRef]
- Wang, P.; Xue, Y.; Shang, X.; Liu, Y. Diphtheria toxin mutant crm197-mediated transcytosis across blood–brain barrier in vitro. Cell. Mol. Neurobiol. 2010, 30, 717–725. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y.; Shang, X.; Xue, Y. Crm197-induced blood–brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J. Mol. Neurosci. 2011, 43, 485–492. [Google Scholar] [CrossRef]
- Diaz-Perlas, C.; Oller-Salvia, B.; Sanchez-Navarro, M.; Teixido, M.; Giralt, E. Branched bbb-shuttle peptides: Chemoselective modification of proteins to enhance blood–brain barrier transport. Chem. Sci. 2018, 9, 8409–8415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malakoutikhah, M.; Prades, R.; Teixido, M.; Giralt, E. N-methyl phenylalanine-rich peptides as highly versatile blood–brain barrier shuttles. J. Med. Chem. 2010, 53, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Teixido, M.; Zurita, E.; Mendieta, L.; Oller-Salvia, B.; Prades, R.; Tarrago, T.; Giralt, E. Dual system for the central nervous system targeting and blood–brain barrier transport of a selective prolyl oligopeptidase inhibitor. Biopolymers 2013, 100, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, K.; Rao, K.S.; Labhasetwar, V.; Ghorpade, A. Efficacy of tat-conjugated ritonavir-loaded nanoparticles in reducing hiv-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. AIDS Res. Human Retrovir. 2011, 27, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Yang, Z.; Zhang, S.; Pang, Z.; Jiang, X. Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. J. Drug Target. 2014, 22, 450–459. [Google Scholar] [CrossRef]
- Rao, K.S.; Reddy, M.K.; Horning, J.L.; Labhasetwar, V. Tat-conjugated nanoparticles for the cns delivery of anti-hiv drugs. Biomaterials 2008, 29, 4429–4438. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef]
- Hoffmann, K.; Milech, N.; Juraja, S.M.; Cunningham, P.T.; Stone, S.R.; Francis, R.W.; Anastasas, M.; Hall, C.M.; Heinrich, T.; Bogdawa, H.M.; et al. A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery. Sci. Rep. 2018, 8, 12538. [Google Scholar] [CrossRef]
- Kanazawa, T.; Morisaki, K.; Suzuki, S.; Takashima, Y. Prolongation of life in rats with malignant glioma by intranasal sirna/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Mol. Pharm. 2014, 11, 1471–1478. [Google Scholar] [CrossRef]
- Kang, H.; DeLong, R.; Fisher, M.H.; Juliano, R.L. Tat-conjugated pamam dendrimers as delivery agents for antisense and sirna oligonucleotides. Pharm. Res. 2005, 22, 2099–2106. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale 2013, 5, 3834–3840. [Google Scholar] [CrossRef] [PubMed]
- Oller-Salvia, B.; Sanchez-Navarro, M.; Giralt, E.; Teixido, M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev. 2016, 45, 4690–4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arranz-Gibert, P.; Guixer, B.; Malakoutikhah, M.; Muttenthaler, M.; Guzman, F.; Teixido, M.; Giralt, E. Lipid bilayer crossing--The gate of symmetry. Water-soluble phenylproline-based blood–brain barrier shuttles. J. Am. Chem. Soc. 2015, 137, 7357–7364. [Google Scholar] [CrossRef] [PubMed]
- Bockenhoff, A.; Cramer, S.; Wolte, P.; Knieling, S.; Wohlenberg, C.; Gieselmann, V.; Galla, H.J.; Matzner, U. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase a. J. Neurosci. 2014, 34, 3122–3129. [Google Scholar] [CrossRef]
- Jimenez-Mancilla, N.; Ferro-Flores, G.; Santos-Cuevas, C.; Ocampo-Garcia, B.; Luna-Gutierrez, M.; Azorin-Vega, E.; Isaac-Olive, K.; Camacho-Lopez, M.; Torres-Garcia, E. Multifunctional targeted therapy system based on (99m) tc/(177) lu-labeled gold nanoparticles-tat(49-57)-lys(3) -bombesin internalized in nuclei of prostate cancer cells. J. Label. Compd. Radiopharm. 2013, 56, 663–671. [Google Scholar] [CrossRef]
- Song, H.P.; Yang, J.Y.; Lo, S.L.; Wang, Y.; Fan, W.M.; Tang, X.S.; Xue, J.M.; Wang, S. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating tat peptide. Biomaterials 2010, 31, 769–778. [Google Scholar] [CrossRef]
- Regina, A.; Demeule, M.; Che, C.; Lavallee, I.; Poirier, J.; Gabathuler, R.; Beliveau, R.; Castaigne, J.P. Antitumour activity of ang1005, a conjugate between paclitaxel and the new brain delivery vector angiopep-2. Br. J. Pharmacol. 2008, 155, 185–197. [Google Scholar] [CrossRef]
- Thomas, F.C.; Taskar, K.; Rudraraju, V.; Goda, S.; Thorsheim, H.R.; Gaasch, J.A.; Mittapalli, R.K.; Palmieri, D.; Steeg, P.S.; Lockman, P.R.; et al. Uptake of ang1005, a novel paclitaxel derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 2009, 26, 2486–2494. [Google Scholar] [CrossRef] [Green Version]
- Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target. 2002, 10, 317–325. [Google Scholar] [CrossRef]
- Azevedo, O.G.; Oliveira, R.A.; Oliveira, B.C.; Zaja-Milatovic, S.; Araujo, C.V.; Wong, D.V.; Costa, T.B.; Lucena, H.B.; Lima, R.C., Jr.; Ribeiro, R.A.; et al. Apolipoprotein e cog 133 mimetic peptide improves 5-fluorouracil-induced intestinal mucositis. BMC Gastroenterol. 2012, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.R.; Tang, W.; Wang, H.; Vitek, M.P.; Bennett, E.R.; Sullivan, P.M.; Warner, D.S.; Laskowitz, D.T. Apoe genotype and an apoe-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biol. Chem. 2003, 278, 48529–48533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Feng, L.; Fan, L.; Zha, Y.; Guo, L.; Zhang, Q.; Chen, J.; Pang, Z.; Wang, Y.; Jiang, X.; et al. Targeting the brain with peg-plga nanoparticles modified with phage-displayed peptides. Biomaterials 2011, 32, 4943–4950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.W.; Gumbleton, M. Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. J. Drug Target. 2006, 14, 191–214. [Google Scholar] [CrossRef]
- Wan, X.M.; Chen, Y.P.; Xu, W.R.; Yang, W.J.; Wen, L.P. Identification of nose-to-brain homing peptide through phage display. Peptides 2009, 30, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A. From blood–brain barrier to blood–brain interface: New opportunities for cns drug delivery. Nature Rev. Drug Disc. 2016, 15, 275–292. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular pathways to neurodegeneration in alzheimer’s disease and other disorders. Nature Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef]
- Clark, D.E. In silico prediction of blood–brain barrier permeation. Drug discovery today 2003, 8, 927–933. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J. Peptides and the blood–brain barrier: Lipophilicity as a predictor of permeability. Brain Res. Bull. 1985, 15, 287–292. [Google Scholar] [CrossRef]
- N’Diaye, A.; Mijouin, L.; Hillion, M.; Diaz, S.; Konto-Ghiorghi, Y.; Percoco, G.; Chevalier, S.; Lefeuvre, L.; Harmer, N.J.; Lesouhaitier, O.; et al. Effect of substance p in staphylococcus aureus and staphylococcus epidermidis virulence: Implication for skin homeostasis. Front. Microbiol. 2016, 7, 506. [Google Scholar] [CrossRef] [PubMed]
- Oller-Salvia, B.; Sanchez-Navarro, M.; Ciudad, S.; Guiu, M.; Arranz-Gibert, P.; Garcia, C.; Gomis, R.R.; Cecchelli, R.; Garcia, J.; Giralt, E.; et al. Miniap-4: A venom-inspired peptidomimetic for brain delivery. Angew. Chem. 2016, 55, 572–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Not available. |
Phage Clone | Sequence | Frequency |
---|---|---|
1.1 | IGVRGCIWDPQP | 1/35 |
1.2 | VAARTGEIYVPW | 8/35 |
1.3 | GLHTSATNLYLH | 11/35 |
1.4 | HAEHSQVRGAAN | 1/35 |
1.5 | AYPQKFNNNFMS | 1/35 |
1.6 | VIGPLDRHAHLK | 2/35 |
1.7 | APTAYNKNDWAL | 1/35 |
1.8 | NRPDSAQFWLHH | 1/35 |
1.9 | IDLRPKDDLPQP | 2/35 |
1.10 | IEASFYDAPRGG | 1/35 |
1.11 | GSWGLNDSSAAY | 2/35 |
1.12 | HASGSISGFWPN | 1/35 |
1.13 | VNMVPIGGNQVV | 1/35 |
1.14 | LNTNSQLQTNNA | 2/35 |
Compound Name | Precursor Ion (m/z) | Product Ion (m/z) | Dwell Time (s) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|
WPVYIEGTRAAV | 681.7 | 302.2 | 0.03 | 25 | 20 |
681.7 | 1061.7 | 0.02 | 25 | 20 | |
GLHTSATNLYLH | 521.16 | 464.8 | 0.03 | 30 | 30 |
521.16 | 831.6 | 0.02 | 30 | 30 | |
VAARTGEIYVPW | 681.45 | 703.21 | 0.063 | 25 | 20 |
681.45 | 979.36 | 0.063 | 25 | 20 | |
HLYLNTASTHLG | 521.32 | 229.11 | 0.03 | 25 | 15 |
521.32 | 813.35 | 0.03 | 25 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majerova, P.; Hanes, J.; Olesova, D.; Sinsky, J.; Pilipcinec, E.; Kovac, A. Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules 2020, 25, 874. https://doi.org/10.3390/molecules25040874
Majerova P, Hanes J, Olesova D, Sinsky J, Pilipcinec E, Kovac A. Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules. 2020; 25(4):874. https://doi.org/10.3390/molecules25040874
Chicago/Turabian StyleMajerova, Petra, Jozef Hanes, Dominika Olesova, Jakub Sinsky, Emil Pilipcinec, and Andrej Kovac. 2020. "Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method" Molecules 25, no. 4: 874. https://doi.org/10.3390/molecules25040874
APA StyleMajerova, P., Hanes, J., Olesova, D., Sinsky, J., Pilipcinec, E., & Kovac, A. (2020). Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules, 25(4), 874. https://doi.org/10.3390/molecules25040874