Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production
Abstract
:1. Introduction
2. Results
2.1. Optimum Composition of BC-ALG Carriers
2.2. Repeated-Batch Biotransformation
2.3. Characteristics of ALG and BC-ALG Carriers
2.4. Comparison between FSC and BC-ALG Carriers in One-Batch Biotransformation
2.5. Cell Survival Rate
3. Discussion
4. Materials and Methods
4.1. Microorganism and Materials
4.2. Cultivation of Microorganisms
4.3. Preparation of Cell Carriers
4.4. Comparison of Productivity between Cells Immobilised in BC-ALG and ALG Carriers
4.5. Analytical Methods
4.5.1. Cell Concentration Measurement
4.5.2. pH Measurement
4.5.3. Analysis of Components in Medium
4.5.4. Cell survival Measurement
4.6. Characterization
4.6.1. SEM
4.6.2. Measurement of Mechanical Properties
4.6.3. FTIR
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Marasco, E.; Schmidt-Dannert, C. Towards the biotechnological production of aroma and flavour compounds in engineered microorganisms. Appl. Biotechnol. Food Sci. Policy 2003, 1, 145–157. [Google Scholar]
- Schrader, J.; Etschmann, M.M.W.; Sell, D.; Hilmer, J.M. Applied biocatalysis for the synthesis of natural flavour compounds: Current industrial processes and future prospects. Biotechnol. Lett. 2004, 26, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Dubal, S.A.; Tilkari, Y.P.; Momin, S.; Borkar, I.V. Biotechnological routes in flavour industry. Adv. Biotechnol. 2008, 6, 20–31. [Google Scholar]
- Braga, A.; Belo, I. Production of γ-decalactone by Yarrowia lipolytica: Insights into experimental conditions and operating mode optimization. J. Chem. Technol. Biotechnol. 2015, 90, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Farbood, M.I.; Willis, B.J. Production of Gamma-Decalactone. WO Patent No. 83/01072, 31 March 1983. [Google Scholar]
- Cheetam, P.S.J.; Maume, K.A.; De Rooij, J.F. Production of Lactones. European Patent No. 0258993, 24 July 1987. [Google Scholar]
- Boog, A.L.; Van Grinsven, A.M.; Peters, A.L.; Roos, R.; Wieg, A.J. Process for Producing Gamma-Lactomes. European Patent No. 0371568, 4 August 1998. [Google Scholar]
- Cardillo, R.; Fuganti, C.; Sacerdote, G.; Barbeni, M.; Cabella, P.; Squarcia, F. Procede de Production Microbiologique de Decanolide Gama (R) et D’octanolide Gama (R). European Patent No. 0356291, 2 August 1989. [Google Scholar]
- Blin-Perrin, C.; Molle, D.; Dufosse, L.; Le-Quere, J.L. Metabolism of ricinoleic acid into γ-decalactone: β-Oxidation and long chain acyl intermediates of ricinoleic acid in the genus sporidiobolus sp. FEMS Microbiol. Lett. 2000, 188, 69–74. [Google Scholar] [CrossRef]
- Aguedo, M.; Beney, L.; Wache, Y.; Belin, J.M. Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J. Appl. Microbiol. 2003, 94, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Attrapadung, S.; Yoshida, J.; Kimura, K.I.; Mizunuma, M. Identification of ricinoleic acid as an inhibitor of Ca2+ signal-mediated cell-cycle regulation in budding yeast. FEMS Yeast Res. 2010, 10, 38–43. [Google Scholar] [CrossRef]
- Holic, R.; Yazawa, H.; Kumagai, H.; Uemura, H. Engineered high content of ricinoleic acid in fission yeast schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 2012, 95, 179–187. [Google Scholar] [CrossRef]
- Cassidy, M.B.; Lee, H.; Trevors, J.T. Environmental applications of immobilized microbial cells: A review. J. Ind. Microbiol. 1996, 16, 79–101. [Google Scholar] [CrossRef]
- Chung, T.P.; Tseng, H.Y.; Juang, R.S. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem. 2003, 38, 1497–1507. [Google Scholar] [CrossRef]
- Martín, M.; Mengs, G.; Plaza, E. Propachlor removal by Pseudomonas strain GCH1 in an immobilized-cell system. Appl. Environ. Microbiol. 2000, 66, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Verbelen, P.J.; De Schutter, D.P.; Delvaux, F.; Verstrepen, K.J.; Delvaux, F.R. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 2006, 28, 1515–1525. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140. [Google Scholar] [CrossRef]
- West, T.P. Effect of carbon source on polysaccharide production by alginate-entrapped Aureobasidium pullulans ATCC 42023 cells. J. Basic. Microbiol. 2011, 51, 673–677. [Google Scholar] [CrossRef]
- Lee, S.L.; Cheng, H.Y.; Chen, W.C.; Chou, C.C. Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1998, 33, 453–459. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Yan, X.U.; Wang, D. Production capacity of γ-decalactone increased by using immobilized Yarrowia sp. Sci. Technol. Food Ind. 2012, 33, 230–233. [Google Scholar]
- Lin, S.P.; Calvar, I.L.; Catchmark, J.M.; Liu, J.R. Biosynthesis, production and applications of bacterial cellulose. Cellulose 2013, 20, 2191–2219. [Google Scholar] [CrossRef]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013, 98, 1585–1598. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.; He, Y.; Duan, T. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites beads. Appl. Surf. Sci. 2015, 338, 22–26. [Google Scholar] [CrossRef]
- Cacicedo, M.L.; León, I.E.; Gonzalez, J.S.; Porto, L.M. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf. B Biointerfaces 2016, 140, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Wahid, F.; Santos, H.A.; Khan, T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr. Polym. 2016, 150, 330–352. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.; Kim, H.; Kim, H.J. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr. Polym. 2017, 157, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Żywicka, A.; Peitler, D.; Rakoczy, R.; Junka, A.F.; Fijałkowski, K. Wet and dry forms of Bacterial Cellulose synthetized by different strains of gluconacetobacter xylinus as carriers for yeast immobilization. Appl. Biochem. Biotechnol. 2016, 180, 805–816. [Google Scholar] [CrossRef]
- Nan, Q.; Jin-Bang, Z.; Meng-yu, Y.; Bo, G.; Da-yu, Y. White-rot Fungi immobilized by Bacterial Cellulose to deal with malachite green dye wastewater. Energy Procedia 2011, 11, 3212–3218. [Google Scholar]
- Adelaide, B.; Belo, I. Immobilization of Yarrowia lipolytica for Aroma Production from Castor Oil. Appl. Biochem. Biotechnol. 2013, 169, 2202–2211. [Google Scholar]
- Lin, F.; Zhang, W.G. γ-decalactone production by immobilized Yarrowia lipolytica cells. Biotechnology 2008, 18, 66–69. [Google Scholar]
- Phisalaphong, M.; Budiraharjo, R.; Bangrak, P.; Mongkolkajit, J. Alginate-loofa as carrier matrix for ethanol production. J. Biosci Bioeng. 2007, 104, 214–217. [Google Scholar] [CrossRef]
- Mongkolkajit, J.; Pullsirisombat, J.; Limtong, S.; Phisalaphong, M. Alumina-doped alginate gel as a cell carrier for ethanol production in a packed bed bioreactor. Biotechnol. Bioprocess Eng. 2011, 16, 505–512. [Google Scholar] [CrossRef]
- Caykara, T.; Demirci, S. Preparation and characterization of blend films of poly (vinyl alcohol) and sodium alginate. J. Macromol. Sci. A 2006, 43, 1113–1121. [Google Scholar] [CrossRef]
- Tarun, K.; Gobi, N. Calcium alginate/PVA blended nano fibre matrix of wound dressing. Indian J. Fibre Text. Res. 2012, 37, 127–132. [Google Scholar]
- Kirdponpattara, S.; Phisalaphong, M. Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem. Eng. J. 2013, 77, 103–109. [Google Scholar] [CrossRef]
- Żywicka, A.; Wenelska, K.; Junka, A.F.; Czajkowska, J.; Fijałkowski, K. An efficient method of Yarrowia lipolytica immobilization using oil- and emulsion-modified bacterial cellulose carriers. Electron. J. Biotechnol. 2019, 41, 30–36. [Google Scholar]
- Żywicka, A.; Banach, A.; Junka, A.F.; Drozd, R.; Fijałkowski, K. Bacterial cellulose as a support for yeast immobilization-correlation between carrier properties and process efficiency. J. Biotechnol. 2019, 291, 1–6. [Google Scholar]
- Żywicka, A.; Wenelska, K.; Junka, A.; Chodaczek, G.; Szymczyk, P.; Fijałkowski, K. Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World J. Microbiol. Biotechnol. 2019, 35, 1–11. [Google Scholar]
- Li, Y.; Wang, S.; Huang, R. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 2015, 16, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Aguedo, M.; Wache’, Y.; Belin, J.M. Biotransformation of ricinoleic acid into γ-decalactone by yeast cells: Recent progress and current questions. Recent Res. Dev. Biotechnol. Bioeng. 2000, 3, 167–179. [Google Scholar]
- Rajiv, D.; Nathalie, B.M.; Dennis, G.W.; Punit, K.; Ruplal, C. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. Food Sci. Technol. 2018, 97, 124–134. [Google Scholar]
Sample Availability: Samples of the compounds BC-ALG carriers are available from the authors. |
Test Numbers | (A) ALG% | (B) ALG:BC | (C) CaCl2% |
---|---|---|---|
A | 2 | 4 | 1.5 |
B | 2 | 3 | 3.0 |
C | 2 | 2 | 4.5 |
D | 3 | 4 | 3.0 |
E | 3 | 3 | 4.5 |
F | 3 | 2 | 1.5 |
G | 4 | 4 | 4.5 |
H | 4 | 3 | 1.5 |
I | 4 | 2 | 3.0 |
Test Numbers | ALG% | CaCl2% |
---|---|---|
A | 2 | 1.5 |
B | 2 | 3.0 |
C | 2 | 4.5 |
D | 3 | 3.0 |
E | 3 | 4.5 |
F | 3 | 1.5 |
G | 4 | 4.5 |
H | 4 | 1.5 |
I | 4 | 3.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; He, H.; Guan, S.; Cai, B.; Li, Q.; Rong, S. Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production. Molecules 2020, 25, 928. https://doi.org/10.3390/molecules25040928
Zhang S, He H, Guan S, Cai B, Li Q, Rong S. Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production. Molecules. 2020; 25(4):928. https://doi.org/10.3390/molecules25040928
Chicago/Turabian StyleZhang, Shuo, Huaying He, Shimin Guan, Baoguo Cai, Qianqian Li, and Shaofeng Rong. 2020. "Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production" Molecules 25, no. 4: 928. https://doi.org/10.3390/molecules25040928
APA StyleZhang, S., He, H., Guan, S., Cai, B., Li, Q., & Rong, S. (2020). Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production. Molecules, 25(4), 928. https://doi.org/10.3390/molecules25040928