In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles
Abstract
:1. Introduction
2. Results and Discussions
2.1. The Synthesis and Characterization of Silk Fibroin Encapsulated Carboplatin Particles
2.2. Biodegradation Analysis
2.3. FTIR Spectra Analysis
2.4. Percentage Encapsulation of SFCP Microparticles
2.5. Cummulative Drug Release
2.6. Apoptotic Activity of SFCP Particles
3. Material and Methods
3.1. Materials
3.2. Methods
3.2.1. Purification of Silk Fibroin
3.2.2. Synthesis of SFCP Particles and Encapsulation of Carboplatin
3.2.3. Particle Size Analysis of SFCP Particles
3.2.4. Morphological Analysis of SFCP Microparticles
3.2.5. Biodegradation Tests for SFCP Particles
3.2.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.2.7. Drug Release ANALYSIS
3.2.8. Culturing MCF-7 Breast Cancer Cell Lines
3.2.9. Assessment of Apoptosis
3.2.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer. Available online: http://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 16 August 2019).
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Chou, H.H.; Kuo, W.L.; Yu, C.C.; Tsai, H.P.; Shen, S.C.; Chu, C.H.; Yu, M.C.; Lo, Y.F.; Dabora, M.A.; Chang, H.K.; et al. Impact of Age on Pathological Complete Response and Locoregional Recurrence in Locally Advanced Breast Cancer After Neoadjuvant Chemotherapy. Biomed. J. 2019, 42, 66–74. [Google Scholar] [CrossRef]
- Al-Zharani, M.; Nasr, F.A.; Abutaha, N.; Alqahtani, A.S.; Noman, O.M.; Mubarak, M.; Wadaan, M.A. Apoptotic Induction and Anti-Migratory Effects of Rhazya Stricta Fruit Extracts on a Human Breast Cancer Cell Line. Molecules 2019, 24, 3968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Moraes, P.D.; Pessine, F.B. Formulation of Functionalized PLGA Nanoparticles With Folic Acid-Conjugated Chitosan for c-Carboplatin Encapsulation. Eur. Polym. J. 2018, 108, 311–321. [Google Scholar] [CrossRef]
- Khan, M.A.; Zafaryab, M.; Mehdi, S.H.; Quadri, J.; Rizvi, M.M. Characterization and Carboplatin Loaded Chitosan Nanoparticles for the Chemotherapy against Breast Cancer in Vitro Studies. Int. J. Biol. Macromol. 2017, 97, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Singh, S.; Lillard, J.W., Jr.; Singh, R. Drug Delivery Approaches for Breast Cancer. Int. J. Nanomed. 2017, 12, 6205–6218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.; Zhang, Y.; Zou, J.; Huang, L.P.; Chordia, M.D.; Yue, W.; Wu, J.J.; Pan, D.F. Synthesis and Biological Evaluation of Genistein-IR783 Conjugate: Cancer Cell Targeted Delivery in MCF-7 for Superior Anti-Cancer Therapy. Molecules 2019, 24, 4120. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticles and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Mfouo-Tynga, I.; Houreld, N.N.; Abrahamse, H. Evaluation of Cell Damage Induced by Irradiated Zinc-Phthalocyanine-Gold Dendrimeric Nanoparticles in a Breast Cancer Cell Line. Biomed. J. 2018, 41, 254–264. [Google Scholar] [CrossRef]
- Wei, Q.Y.; He, K.M.; Chen, J.L.; Xu, Y.M.; Lau, A.T. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019, 24, 4246. [Google Scholar] [CrossRef] [Green Version]
- Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in Cancer Therapy and Diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36. [Google Scholar] [CrossRef]
- Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013, 73, 2412–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H. Shaping Tumor Microenvironment for Improving Nanoparticle Delivery. Curr. Drug Metab. 2016, 17, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin Nanoparticle as a Novel Drug Delivery System. J. Control. Release 2015, 206, 161–176. [Google Scholar] [CrossRef]
- Pham, D.T.; Saelim, N.; Tiyaboonchai, W. Alpha mangostin Loaded Crosslinked Silk Fibroin-Based Nanoparticles for Cancer Chemotherapy. Colloids Surf. B Biointerfaces 2019, 181, 705–713. [Google Scholar] [CrossRef]
- Adali, T.; Kalkan, R.; Karimizarandi, L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int. J. Biol. Macromol. 2019, 124, 541–547. [Google Scholar] [CrossRef]
- Adalı, T.; Uncu, M. Silk Fibroin as a Non-Thrombogenic Biomaterial. Int. J. Biol. Macromol. 2016, 90, 11–19. [Google Scholar] [CrossRef]
- Tulay, P.; Galam, N.; Adali, T. The Wonders of Silk Fibroin Biomaterials in the Treatment of Breast Cancer. Crit. Rev. Eukaryot. Gene Expr. 2018, 28, 129–134. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics 2019, 11, 494. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.Y.; Woodward, N.; Coward, J.I. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol. Hematol. 2016, 1, 37–46. [Google Scholar] [CrossRef] [Green Version]
- van der Vijgh, W.J. Clinical Pharmacokinetics of Carboplatin. Clin. Pharmacokinet. 1991, 21, 242–261. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, F.; Chen, Y.; Yu, T.; Lou, D.; Guo, Y.; Li, P.; Wang, Z.; Ran, H. Drug Release from Core-Shell PVA/Silk Fibroin Nanoparticles Fabricated by One-Step Electrospraying. Sci. Rep. 2017, 7, 11913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Hernández, J.A.; Torres-Chávez, P.I.; Ramírez-Wong, B.; Rascon-Chu, A.; Plascencia-Jatomea, M.; Barreras-Urbina, C.G.; Rangel-Vázquez, N.A.; Rodriguez-Felix, F. Micro-and Nanoparticles by Electrospray: Advances and Applications in Foods. J. Agric. Food Chem. 2015, 63, 4699–4707. [Google Scholar] [CrossRef]
- Subia, B.; Chandra, S.; Talukdar, S.; Kundu, S.C. Folate Conjugated Silk Fibroin Nanocarriers for Targeted Drug Delivery. Integr. Biol. 2013, 6, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Lillard, J.W., Jr. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senchukova, M.A.; Nikitenko, N.V.; Tomchuk, O.N.; Zaitsev, N.V.; Stadnikov, A.A. Different Types of Tumor Vessels in Breast Cancer: Morphology and Clinical Value. Springerplus 2015, 4, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D.Y.; Zink, J.I.; Nel, A.E. Use of Size and a Copolymer Design Feature to Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in aMurine Xenograft Tumor Model. ACS Nano 2011, 5, 4131–4144. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Juna, B.C.; Cinu, T.A.; Jyoti, H.; Aleykutty, N.A. Carboplatin Loaded Surface Modified PLGA Nanoparticles: Optimization, Characterization, and in Vivo Brain Targeting Studies. Colloids Surf. B Biointerfaces 2016, 142, 307–314. [Google Scholar] [CrossRef]
- Lozano-Pérez, A.A.; Gil, A.L.; Pérez, S.A.; Cutillas, N.; Meyer, H.; Pedreño, M.; Aznar-Cervantes, S.D.; Janiak, C.; Cenis, J.L.; Ruiz, J. Antitumor Properties of Platinum (Iv) Prodrug-Loaded Silk Fibroin Nanoparticles. Dalton Trans. 2015, 44, 13513–13521. [Google Scholar] [CrossRef]
- Basotra, M.; Singh, S.K.; Gulati, M. Development and Validation of a Simple and Sensitive Spectrometric Method for Estimation of Cisplatin Hydrochloride in Tablet Dosage Forms: Application to Dissolution Studies. ISRN Anal. Chem. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.X.; Bos, P.D.; Massagué, J. Metastasis: From Dissemination to Organ-Specific Colonization. Nat. Rev. Cancer 2009, 9, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.B.; Gupta, V. Silk Fibroin-Derived Nanoparticles for Biomedical Applications. Nanomedicine 2010, 5, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New Insights into Therapeutic Activity and Anticancer Properties of Curcumin. J. Exp. Pharmacol. 2017, 9, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
SFCP Microparticle Size Distribution Analysis | |
---|---|
Weighted residual | 0.802% |
Size Range | 0.02–2000 µm |
Sensitivity | Normal |
Concentration | 0.0728% Volume |
Specific Surface Area | 0.184 m2/g |
Surface weighted mean D [3,2] | 40.629 µm |
Volume weighted mean D [4,3] | 79.695 µm |
d(0.1) | 22.212 µm |
d(0.5) | 61.728 µm |
d(0.9) | 146.080 µm |
Time (h) | SPCP1 (µg) | SPCP2 (µg) | SPCP3 (µg) |
---|---|---|---|
0.00 | 100.00 | 100 | 100 |
0.25 | 90.88 | 86.30 | 83.40 |
0.50 | 82.64 | 79.22 | 75.76 |
0.75 | 73.40 | 69.85 | 66.41 |
1.00 | 60.87 | 56.20 | 50.22 |
1.25 | 59.41 | 49.23 | 42.35 |
1.50 | 52.73 | 43.32 | 30.72 |
1.75 | 45.53 | 38.90 | 13.65 |
2.00 | 36.90 | 30.24 | 05.44 |
2.30 | 27.23 | 18.84 | 0 |
2.75 | 18.35 | 05.67 | 0 |
3.00 | 04.23 | 0 | 0 |
12 | 0 | 0 | 0 |
24 | 0 | 0 | 0 |
25 | 0 | 0 | 0 |
26 | 0 | 0 | 0 |
Sample | SF (mL) | CP (mL) (10%) v/v) | 0.1 M TPP (mL) |
---|---|---|---|
SFCP1 | 10 | 0.01 | 50 |
SFCP2 | 10 | 0.05 | 50 |
SFCP3 | 10 | 0.10 | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galam, N.; Tulay, P.; Adali, T. In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles. Molecules 2020, 25, 1110. https://doi.org/10.3390/molecules25051110
Galam N, Tulay P, Adali T. In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles. Molecules. 2020; 25(5):1110. https://doi.org/10.3390/molecules25051110
Chicago/Turabian StyleGalam, Nanyak, Pinar Tulay, and Terin Adali. 2020. "In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles" Molecules 25, no. 5: 1110. https://doi.org/10.3390/molecules25051110
APA StyleGalam, N., Tulay, P., & Adali, T. (2020). In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles. Molecules, 25(5), 1110. https://doi.org/10.3390/molecules25051110