Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner)
Abstract
:1. Introduction
2. Methods and Materials
2.1. Insects
2.2. Gland Extraction
2.3. Headspace Collections
2.4. GC-MS Analysis
2.5. Electrophysiological Assays
2.6. Y-maze Bioassays
3. Results
3.1. Electrophysiological Responses
3.2. Y-maze Bioassays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vijaysegaran, S. Fruit fly research and development in tropical Asia. In Management of Fruit Flies in the Pacific; Allwood, A., Drew, R.E., Eds.; Australian Centre for International Agricultural Research Proceedings: Canberra, Australia, 1997; pp. 21–29. [Google Scholar]
- Hickey, P.; Woods, B.; Windle, B.; Ransom, L.; Gunasekera, D.; Green, A.; Plowman, D.; Panitz, M.; Scott, N.S.; Chapman, J. National Fruit Fly Strategy Implementation Action Plan; Plant Health Australia: Canberra, Australia, 2010.
- Clarke, A.R.; Powell, K.S.; Weldon, C.W.; Taylor, P.W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management? Ann. Appl. Biol. 2011, 158, 26–54. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Daane, K.M.; Canale, A.; Niu, C.-Y.; Messing, R.H.; Vargas, R.I. Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for integrated pest management. J. Pest. Sci. 2014, 87, 385–405. [Google Scholar] [CrossRef]
- McAuslane, H.J.; Metcalf, R.L.; Metcalf, E.R. Plant kairomones in insect ecology and control. Fla. Èntomol. 1992, 75, 613. [Google Scholar] [CrossRef]
- Hancock, D.L.; Hamacek, E.L.; Lloyd, A.C.; Elson-Harris, M.M. The Distribution and Host Plants of Fruit Flies (Diptera: Tephritidae) in Australia; Queensland Department of Primary Industries: Brisbane, Australia, 2000. [Google Scholar]
- Leblanc, L.; William, J.; Allwood, A.J. Host fruit of mango fly (Bactrocera frauenfeldi (Schiner)) (Diptera: Tephritidae) in the Federated States of Micronesia. Micronesica 2004, 37, 21–31. [Google Scholar]
- Leblanc, L.; Allwood, A.J. Mango fruit fly (Bactrocera frauenfeldi): why so many in federated states of Micronesia. In Management of Fruit Flies in the Pacific; Allwood, A.J., Drew, R.A.I., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 125–130. [Google Scholar]
- Hardy, D.E.; Adachi, M. Diptera: Tephritidae. In Insects of Micronesia; Bishop Museum Bulletin: Honolulu, Hawaii, 1956; pp. 1–28. [Google Scholar]
- Allwood, A.J.; Leblanc, L. Losses caused by fruit flies (Diptera: Tephritidae) in seven Pacific Island countries. In Management of Fruit Flies in the Pacific; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 208–211. [Google Scholar]
- Mararuai, A.N. Market Access of Papua New Guinea Bananas (Musa spp.) with Particular Respect to Banana Fly (Bactrocera musae (Tryon)) (Diptera: Tephritidae). Ph.D. Thesis, School of Natural Resource Sciences, Queensland University of Technology, Queensland, Australia, 2010. [Google Scholar]
- Schutze, M.; McMahon, J.; Krosch, M.; Strutt, F.; Royer, J.; Bottrill, M.; Woods, N.; Cameron, S.; Woods, B.; Blacket, M. The Australian Handbook for the Identification of Fruit Flies; Version 3.1; Plant Health Australia: Canberra, ACT, Australia, 2018; ISBN 9780648245605.
- Osborne, R.; Meats, A.; Frommer, M.; Sved, J.A.; Drew, R.A.I.; Robson, M.K. Australian Distribution of 17 Species of Fruit Flies (Diptera: Tephritidae) Caught in Cue Lure Traps in February 1994. Aust. J. Èntomol. 1997, 36, 45–50. [Google Scholar] [CrossRef]
- Drew, R.A.I.; Hancock, D.L.; Romig, M.C. New species and records of fruit flies (Diptera: Tephritidae: Dacinae) from north Queensland. Aust. Entomol. 1999, 26, 1–12. [Google Scholar]
- Royer, J.; Wright, C.L.; Hancock, D.L. Bactrocera frauenfeldi (Diptera: Tephritidae), an invasive fruit fly in Australia that may have reached the extent of its spread due to environmental variables. Austral. Èntomol. 2015, 55, 100–111. [Google Scholar] [CrossRef]
- Tan, K.H.; Nishida, R.; Jang, E.B.; Shelly, T.E. Pheromones, male lures, and trapping of Tephritid fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Lures, Area-Wide Programs, and Trade Implications; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 15–74. [Google Scholar]
- Epsky, N.D.; Kendra, P.; Schnell, E.Q. History and Development of Food-Based Attractants. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Springer: Dordrecht, The Netherlands, 2014; pp. 75–118. [Google Scholar]
- Royer, J.E. Responses of fruit flies (Tephritidae: Dacinae) to novel male attractants in north Queensland, Australia, and improved lures for some pest species. Austral. Èntomol. 2015, 54, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Marco, J.; Barberà, O.; Rodriguez, S.; Domingo, C.; Adell, J. Flavonoids and other phenolics from Artemisia hispanica. Phytochemistry 1988, 27, 3155–3159. [Google Scholar] [CrossRef]
- Keng-Hong, T.; Nishida, R. Synomone or kairomone?—Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies. J. Chem. Ecol. 2005, 31, 497–507. [Google Scholar] [CrossRef]
- Ayer, W.A.; Singer, P.P. Phenolic metabolites of the bird’s nest fungus Nidula niveo-tomentosa. Phytochemistry 1980, 19, 2717–2721. [Google Scholar] [CrossRef]
- Nishida, R.; Iwahashi, O.; Tan, K.H. Accumulation of Dendrobium superbum (orchidaceae) fragrance in the rectal glands by males of the melon fly, Dacus cucurbitae. J. Chem. Ecol. 1993, 19, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Nishida, R. Zingerone in the floral synomone of Bulbophyllum baileyi (Orchidaceae) attracts Bactrocera fruit flies during pollination. Biochem. Syst. Ecol. 2007, 35, 334–341. [Google Scholar] [CrossRef]
- Kumaran, N.; Hayes, R.A.; Clarke, A.R. Cuelure but not zingerone make the sex pheromone of male Bactrocera tryoni (Tephritidae: Diptera) more attractive to females. J. Insect Physiol. 2014, 68, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nation, J.L. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, Anastrepha suspensa. Ann. Èntomol. Soc. Am. 1972, 65, 1364–1367. [Google Scholar] [CrossRef]
- Perkins, M.V. Characterisation and Synthesis of Bactrocera Fruit Fly Pheromones; University of Queensland Library: Queensland, Australia, 2015. [Google Scholar]
- Freidberg, A.; Kaneshiro, K.; Sivinski, J.; Aluja, M.; Landolt, P.; Dodson, G.; Headrick, D. Topics in the Evolution of Sexual Behavior in the Tephritidae. In Fruit Flies (Tephritidae); CRC Press: Boca Raton, FL, USA, 1999; pp. 751–792. [Google Scholar]
- Cruz-López, L.; Malo, E.A.; Rojas, J.C. Sex Pheromone of Anastrepha striata. J. Chem. Ecol. 2015, 41, 458–464. [Google Scholar] [CrossRef]
- Sivinski, J.M.; Calkins, C. Use of pheromones in tropical crops: Pheromones and parapheromones in the control of tephritids. Florida Entomol. 1986, 69, 157–168. [Google Scholar] [CrossRef]
- Hendrichs, J.; Robinson, A.S.; Cayol, J.P.; Enkerlin, W.; Society, F.E. Medfly areawide sterile insect technique programmes for prevention, supression or eradication: The importance of mating behavior studies. Fla. Èntomol. 2002, 85, 1–13. [Google Scholar] [CrossRef]
- Bellas, T.E.; Fletcher, B.S. Identification of the major components in the secretion from the rectal pheromone glands of the Queensland fruit flies Dacus tryoni and Dacus neohumeralis (Diptera: Tephritidae). J. Chem. Ecol. 1979, 5, 795–803. [Google Scholar] [CrossRef]
- Kitching, W.; Lewis, J.A.; Fletcher, M.T.; Drew, R.A.I.; Moore, C.J.; Francke, W. Spiroacetals in rectal gland secretions of Australasian fruit fly species. J. Chem. Soc. Chem. Commun. 1986, 11, 853. [Google Scholar] [CrossRef]
- Kitching, W.; Lewis, J.A.; Perkins, M.V.; Drew, R.; Moore, C.J.; Schurig, V.; Koenig, W.A.; Francke, W. Chemistry of fruit flies. Composition of the rectal gland secretion of (male) Dacus cucumis (cucumber fly) and Dacus halfordiae. Characterization of (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. J. Org. Chem. 1989, 54, 3893–3902. [Google Scholar] [CrossRef]
- Fletcher, M.T.; Kitching, W. Chemistry of fruit flies. Chem. Rev. 1995, 95, 789–828. [Google Scholar] [CrossRef]
- Hayes, P.; Fletcher, M.T.; Moore, C.J.; Kitching, W. Synthesis and absolute stereochemistry of a constitutionally new spiroacetal from an insect. J. Org. Chem. 2001, 66, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.V.; Fletcher, M.T.; Kitching, W.; Drew, R.A.I.; Moore, C.J. Chemical studies of rectal gland secretions of some species of Bactrocera dorsalis complex of fruit flies (diptera: Tephritidae). J. Chem. Ecol. 1990, 16, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Ohinata, K.; Jacobson, M.; Kobayashi, R.M.; Chambers, D.L.; Fujimoto, M.S.; Higa, H.H. Oriental fruit fly and melon fly: Biological and chemical studies of smoke produced by males. J. Environ. Sci. Heal. Part. A Environ. Sci. Eng. 1982, 17, 197–216. [Google Scholar] [CrossRef]
- Baker, R.; Herbert, R.H. Isolation and synthesis of 1,7-dioxaspiro[5.5]undecane and 1,7-dioxaspiro[5.5]undecan-3-and -4-ols from the olive fly (Dacus oleae). J. Chem. Soc. Perkin Trans. 1 1987, 1123. [Google Scholar] [CrossRef]
- Tokushima, I.; Orankanok, W.; Tan, K.H.; Ono, H.; Nishida, R. Accumulation of phenylpropanoid and sesquiterpenoid volatiles in male rectal pheromonal glands of the guava fruit fly, Bactrocera correcta. J. Chem. Ecol. 2010, 36, 1327–1334. [Google Scholar] [CrossRef]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. 2011. Available online: http://www.pherobase.com/ (accessed on 20 November 2011).
- Levi-Zada, A.; Nestel, D.; Fefer, D.; Nemni-Lavy, E.; Deloya-Kahane, I.; David, M. Analyzing diurnal and age-related pheromone emission of the olive fruit fly, Bactrocera oleae by Sequential SPME-GCMS Analysis. J. Chem. Ecol. 2012, 38, 1036–1041. [Google Scholar]
- Haniotakis, G.E.; Mazomenos, B.E.; Tumlinson, J.H. A sex attractant of the olive fruit fly, Dacus oleae and its biological activity under laboratory and field conditions. Èntomol. Exp. et Appl. 1977, 21, 81–87. [Google Scholar] [CrossRef]
- Benelli, G.; Bonsignori, G.; Stefanini, C.; Raspi, A.; Canale, A. The production of female sex pheromone in Bactrocera oleae (Rossi) young males does not influence their mating chances. Èntomol. Sci. 2012, 16, 47–53. [Google Scholar] [CrossRef]
- Baker, R.; Herbert, R.H.; Lomer, R.A. Chemical components of the rectal gland secretions of male Dacus cucurbitae, the melon fly. Cell. Mol. Life Sci. 1982, 38, 232–233. [Google Scholar] [CrossRef]
- Baker, R.; Bacon, A.J. The identification of spiroacetals in the volatile secretions of two species of fruit fly (Dacus dorsalis, Dacus curcurbitae). Cell. Mol. Life Sci. 1985, 41, 1484–1485. [Google Scholar] [CrossRef]
- Nishida, R.; Tan, K.H.; Serit, M.; Lajis, N.H.; Sukari, A.M.; Takahashi, S.; Fukami, H. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly, Dacus dorsalis. Cell. Mol. Life Sci. 1988, 44, 534–536. [Google Scholar] [CrossRef]
- Nishida, R.; Tan, K.H.; Fukami, H. Cis-3,4-dimethoxycinnamyl alcohol from the rectal glands of male oriental fruit fly, Dacus dorsalis. Chem. Express 1988, 3, 207–210. [Google Scholar]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef]
- Canale, A.; Benelli, G.; Germinara, G.S.; Fusini, G.; Romano, D.; Rapalini, F.; Desneux, N.; Rotundo, G.; Raspi, A.; Carpita, A. Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Chemoecology 2014, 25, 147–157. [Google Scholar] [CrossRef]
- Biasazin, T.D.; Chernet, H.T.; Herrera, S.L.; Bengtsson, M.; Karlsson, M.F.; Lemmen-Lechelt, J.K.; Dekker, T. Detection of volatile constituents from food lures by tephritid fruit flies. Insects 2018, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wei, C.; Miao, J.; Zhang, X.; Wei, B.; Dong, W.-X.; Xiao, C. Chemical compounds from female and male rectal pheromone glands of the guava fruit fly, Bactrocera correcta. Insects 2019, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Steiner, L.F.; Mitchell, S. Tephritid Fruit Flies. In Insect Colonization and Mass Production; Academic Press: Waltham, MA, USA, 1966; pp. 555–583. [Google Scholar]
- Pérez, J.; Park, S.J.; Taylor, P. Domestication modifies the volatile emissions produced by male Queensland fruit flies during sexual advertisement. Sci. Rep. 2018, 8, 16503. [Google Scholar] [CrossRef]
- Kitching, W.; Lewis, J.A.; Fletcher, M.T.; De Voss, J.J.; Drew, R.A.I.; Moore, C.J. Spiroacetals from dienones and hydroxyenones by mercury(II) cyclisation. J. Chem. Soc. Chem. Commun. 1986, 855–856. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Byers, J.A.; Manning, L.M.; Jürgens, A.; Mitchell, V.J.; Suckling, D.M. Floral scent of Canada thistle and its potential as a generic insect attractant. J. Econ. Entomol. 2008, 101, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Booth, Y.K.; Hayes, P.Y.; Moore, C.J.; Lambert, L.K.; Kitching, W.; De Voss, J.J. Synthesis and absolute configuration of a constitutionally-new [5.6] spiroacetal from B. tryoni (Queensland fruit fly). Org. Biomol. Chem. 2007, 5, 1111. [Google Scholar] [CrossRef] [PubMed]
- Francke, W.; Kitching, W. Spiroacetals in Insects. Curr. Org. Chem. 2001, 5, 233–251. [Google Scholar] [CrossRef]
- El-Sayed, A.; Venkatesham, U.; Unelius, C.R.; Sporle, A.; Pérez, J.; Taylor, P.W.; Suckling, D.M. Chemical composition of the rectal gland and volatiles released by female Queensland Fruit Fly, Bactrocera tryoni (Diptera: Tephritidae). Environ. Èntomol. 2019, 48, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.T.; Wells, J.A.; Jacobs, M.F.; Krohn, S.; Francke, W.; Kitching, W.; Drew, R.A.I.; Moore, C.J. Chemistry of fruit-flies. Spiroacetal-rich secretions in several Bactrocera species from the South-West Pacific region. J. Chem. Soc. Perkin Trans. 1 1992, 2827–2831. [Google Scholar] [CrossRef]
- Booth, Y.K.; Schwartz, B.; Fletcher, M.T.; Lambert, L.K.; Kitching, W.; De Voss, J.J. A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly). Chem. Commun. 2006, 3975. [Google Scholar] [CrossRef]
- Noushini, S.; Pérez, J.; Park, S.; Holgate, D.; Jamie, I.; Jamie, J.; Taylor, P. Rectal gland chemistry, volatile emissions, and antennal responses of male and female banana fruit fly, Bactrocera musae. Insects 2019, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Symonds, M.R.E.; Moussalli, A.; Elgar, M. The evolution of sex pheromones in an ecologically diverse genus of flies. Boil. J. Linn. Soc. 2009, 97, 594–603. [Google Scholar] [CrossRef]
- Perkins, M.V.; Kitching, W.; Drew, R.A.I.; Moore, C.J.; König, W.A. Chemistry of fruit flies: Composition of the male rectal gland secretions of some species of South-East Asian Dacinae. Re-examination of Dacus cucurbitae (melon fly). J. Chem. Soc. Perkin Trans. 1 1990, 1111–1117. [Google Scholar] [CrossRef]
- Wu, H.; Hou, C.; Huang, L.-Q.; Yan, F.-S.; Wang, C.-Z. Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa species. PLoS ONE 2013, 8, e70078. [Google Scholar] [CrossRef] [Green Version]
- Arn, H.; Tóth, M.; Priesner, E. List of Sex Pheromones of Lepidoptera and Related Attractants, 2nd ed.; International Organization for Biological Control, West Palearctic Regional Section: Montfavet, France, 1992. [Google Scholar]
- Nation, J.L. Biology of pheromone release by male Caribbean fruit flies, Anastrepha suspensa (Diptera: Tephritidae). J. Chem. Ecol. 1990, 16, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Herbert, R.H.; Grant, G.G. Isolation and identification of the sex pheromone of the Mediterranean fruit fly, Ceratitis capitata (Wied). J. Chem. Soc. Chem. Commun. 1985, 12, 824–825. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | Females | Males | RT | KI | Diagnostic Ions m/z (%) | ||
---|---|---|---|---|---|---|---|
Headspace (%) | Rectal Gland (%) | Headspace (%) | Rectal Gland (%) | ||||
N-(2-Methyl-butyl)acetamide (1) | ND | <1 | ND | ND | 9.7 | 1133 | 129 (M+, 5.2), 100 (62.2), 73 (β-cleavage/H rearrangement, 76.4), 72 (M – C4H9, 100), 60 (CH3C(OH)NH+, 54.8) |
N-(3-Methylbutyl)acetamide (2) | <1 | <1 | ND | ND | 9.8 | 1137 | 129 (M+, 6.6), 114 (18.2), 86 (28.4), 73 (β-cleavage/H rearrangement, 100), 72 (M – C4H9, 74.4), 60 (CH3C(OH)NH+, 32.6) |
(E,E)-2,8-Dimethyl-1,7-dioxaspiro[5.5]undecane (3) | 53.9 | 20.1 | 24.6 | 16.6 | 9.9 | 1147 | 184 (M+, 9.7), 169 (2.1), 140 (17.8), 125 (9.7), 115 (CH3(C5H7O)=OH+, 98.1), 112 (CH3(C5H7O)=CH2, 100), 97 (75.4), 69 (33.3), 55 (31.2) |
(E,E)-2-Ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane (4) | 5.7 | <1 | 75.4 | 70.3 | 11.3 | 1237 | 198 (M+, 10.7), 169 (14.1), 140 (17.5), 129 (CH3CH2(C5H7O)=OH+, 52), 126 (CH3CH2(C5H7O)=CH2, 40.1), 115 CH3(C5H7O)=OH+, 94.2), 112 (CH3(C5H7O)=CH2, 100), 97 (66.5), 69 (43.5), 55 (49.1) |
Ethyl caprate (5) | ND | <1 | ND | ND | 13.5 | 1396 | 200 (M+, 1.7), 171 (4.2), 157 (19.5), 155 (M – OC2H5, 15.9), 115 (9.7), 101 (44.7), 88 (100), 73 (COOC2H5, 23.6), 70 (27.6) |
Methyl laurate (6) | 2.1 | <1 | ND | ND | 15.1 | 1524 | 214 (M+, 3.7), 183 (M – OCH3, 7.8), 171 (14.6), 143 (18.2), 87 (60), 74 (100), 59 (COOCH3, 8.4), 55 (22.8) |
Ethyl laurate (7) | 30.3 | 18.9 | ND | ND | 15.9 | 1595 | 228 (M+, 4.3), 199 (4.7), 183 (M – OC2H5, 11.6), 157 (18.2), 101 (52.9), 88 (100), 73 (COOC2H5, 20.9), 70 (25.8), 61 (13.6), 55 (21.3) |
Ethyl tridecanaote (8) | ND | <1 | ND | ND | 16.8 | 1667 | 242 (M+, 4.5), 213 (11.9), 199 (15.6), 197 (M – OC2H5, 2.3), 157 (31.7), 101 (60.9), 88 (100), 73 (COOC2H5, 5.8), 57 (25.9), 55 (24.4) |
Propyl laurate (9) | ND | <1 | ND | ND | 17.1 | 1691 | 242 (M+, 1.6), 201 (40.4), 199 (1.1), 183 (M – OC3H7, 36.5), 115 (26.7), 102 (29.7), 87 (COOC3H7, 11.2), 61 (100), 60 (34), 55 (30.4) |
Methyl myristate (10) | <1 | 1.4 | ND | ND | 17.4 | 1727 | 242 (M+, 6.6), 211 (M – OCH3, 6.3), 199 (16.2), 143 (25.6), 87 (64.4), 74 (100), 59 (COOCH3, 7.8), 55 (23.4) |
Myristic acid (11) | ND | <1 | ND | ND | 17.8 | 1759 | 228 (M+, 19.8), 185 (44.6), 171 (26.6), 143 (25.2), 129 (67.6), 115 (24.5), 97 (22.1), 87 (33.1), 85 (21.2), 83 (25.7), 73 (100), 69 (39.3), 60 (CH3COOH, 90.6), 57 (68), 55 (64) |
Ethyl myristoleate (12) | 2.6 | 1.9 | ND | ND | 18.1 | 1785 | 254 (M+, 4.1), 209 (M – OC2H5, 13.9), 208 (M – C2H5OH, 14.9), 166 (28.8), 124 (23.7), 88 (46.3), 73 (COOC2H5, 16.6), 69 (52.1), 55 (100) |
Ethyl myristate (13) | 1.9 | 14.6 | ND | ND | 18.2 | 1795 | 256 (M+, 7.1), 213 (13.8), 211 (M – OC2H5, 8.16), 157 (21.9), 101 (53.8), 88 (100), 73 (COOC2H5, 17.8), 70 (22.1), 55 (20.1) |
Methyl palmitoleate (14) | ND | 2.5 | ND | ND | 19.3 | 1909 | 268 (M+, 5.1), 237 (M – OCH3, 14.2), 236 (M – CH3OH, 18.5), 194 (17.9), 152 (24.1), 96 (51.3), 74 (52.3), 59 (COOCH3, 17.1), 55 (100) |
Methyl palmitate (15) | ND | <1 | ND | ND | 19.5 | 1928 | 270 (M+, 12.5), 227 (14.8), 143 (23.6), 87 (68.2), 74 (100), 69 (12.5), 59 (COOCH3, 7.2), 55 (24.8) |
Palmitoleic acid (16) | ND | 5.5 | ND | 4.4 | 19.7 | 1825 | 254 (M+, 2.2), 236 (13.6), 152 (9.2), 111 (23.8), 98 (33.8), 97 (50.3), 96 (35.2), 83 (56.4), 73 (15.3), 69 (73.7), 60 (CH3COOH, 10), 57 (24.8), 55 (100) |
Palmitic acid (17) | ND | 3.1 | ND | 3.9 | 19.9 | 1962 | 256 (M+, 38.1), 227 (9.9), 213 (M – COOH, 31.3), 185 (26.9), 157 (31.4), 129 (61.8), 115 (26.5), 97 (33.2), 87 (36.7), 85 (37), 83 (39), 73 (100), 69 (45.9), 60 (CH3COOH, 84.8), 57 (88.9), 55 (75.4) |
Ethyl palmitoleate (18) | 2.5 | 16.1 | ND | ND | 20.0 | 1977 | 282 (M+, 2.9), 237 (M – OC2H5, 19.1), 236 (M – C2H5OH, 21.3), 194 (23.2), 152 (28.6), 88 (57.3), 73 (COOC2H5, 16.8), 69 (68.7), 55 (100) |
Ethyl palmitate (19) | ND | 5.3 | ND | ND | 20.2 | 1995 | 284 (M+, 11.2), 255 (4.1), 241 (13.2), 239 (M – OC2H5, 7.5), 157 (21.3), 101 (57.5), 88 (100), 73 (COOC2H5, 16.1) |
Methyl elaidate (20) | ND | <1 | ND | ND | 21.2 | 2102 | 296 (M+, 5.3), 265 (M – OCH3, 17.8), 264 (26.7), 222 (16.9), 152 (13.6), 97 (62.2), 74 (47.5), 69 (66.2), 55 (100) |
Ethyl oleate (21) | ND | 6.4 | ND | 4.8 | 21.6 | 2144 | 310 (M+, 1.2), 265 (M – OC2H5, 8.8), 264 (M – C2H5OH, 16.9), 222 (5.4), 123 (13.6), 110 (22.8), 97 (59.7), 88 (54.1), 83 (62.9), 73 (COOC2H5, 15.1), 69 (72.1), 55 (100) |
Ethyl elaidate (22) | ND | 1.9 | ND | ND | 21.8 | 2172 | 310 (M+, 7.9), 265 (M – OC2H5, 24.5), 264 (M – C2H5OH, 31.7), 222 (22.1), 180 (20.4), 110 (31.4), 97 (65.5), 88 (57.9), 83 (63.4), 73 (COOC2H5, 15.2), 69 (68.4), 55 (100) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noushini, S.; Perez, J.; Park, S.J.; Holgate, D.; Mendez Alvarez, V.; Jamie, I.; Jamie, J.; Taylor, P. Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner). Molecules 2020, 25, 1275. https://doi.org/10.3390/molecules25061275
Noushini S, Perez J, Park SJ, Holgate D, Mendez Alvarez V, Jamie I, Jamie J, Taylor P. Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner). Molecules. 2020; 25(6):1275. https://doi.org/10.3390/molecules25061275
Chicago/Turabian StyleNoushini, Saeedeh, Jeanneth Perez, Soo Jean Park, Danielle Holgate, Vivian Mendez Alvarez, Ian Jamie, Joanne Jamie, and Phillip Taylor. 2020. "Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner)" Molecules 25, no. 6: 1275. https://doi.org/10.3390/molecules25061275
APA StyleNoushini, S., Perez, J., Park, S. J., Holgate, D., Mendez Alvarez, V., Jamie, I., Jamie, J., & Taylor, P. (2020). Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner). Molecules, 25(6), 1275. https://doi.org/10.3390/molecules25061275