Effect of Multiplicity Fluctuation in Cobalt Ions on Crystal Structure, Magnetic and Electrical Properties of NdCoO3 and SmCoO3
Abstract
:1. Introduction
2. Samples and Experimental Methods
3. Results and Discussions
3.1. X-Ray Phase and X-Ray Diffraction Analysis
3.2. Magnetic Properties
3.3. Thermal Expansion
3.4. Transport Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goodenough, J.B. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1− xSrxCoO3−δ. J. Phys. Chem. Solids 1958, 6, 287–297. [Google Scholar] [CrossRef]
- Raccah, P.M.; Goodenough, J.B. First-order localized-electron ⇆ Collective-electron transition in LaCoO3. Phys. Rev. 1967, 155, 932–943. [Google Scholar] [CrossRef]
- Bhide, V.G.; Rajoria, D.S. Mössbauer studies of the high-spin—Low-spin equilibria and the localized-collective electron transition in LaCoO3. Phys. Rev. B 1972, 6, 1021–1032. [Google Scholar] [CrossRef]
- Asai, K.; Yokokura, O.; Nishimori, N.; Chou, H.; Tranquada, J.M.; Shirane, G.; Higuchi, S.; Okajima, Y.; Kohn, K. Neutron-scattering study of the spin-state transition and magnetic correlations in La1−xSrxCoO3 (x = 0 and 0.08). Phys. Rev. B 1994, 50, 3025–3032. [Google Scholar] [CrossRef]
- Knížek, K.; Jirak, Z.; Hejtmanek, J.; Veverka, M.; Marysko, M.; Maris, G.; Palstra, T.T.M. Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur. Phys. J. B Condens. Matter Complex Syst. 2005, 47, 213–220. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martinez-Lope, M.J.; de la Calle, C.; Pomjakushin, V. Preparation and structural study from neutron diffraction data of RCoO3 (R = Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu) perovskites. J. Mater. Chem. 2006, 16, 1555–1560. [Google Scholar] [CrossRef]
- Berggold, K.; Kriener, M.; Becker, P.; Benomar, M.; Reuther, M.; Zobel, C.; Lorenz, T. Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO3 (R = La, Pr, Nd, and Eu). Phys. Rev. B 2008, 78, 134402. [Google Scholar] [CrossRef] [Green Version]
- Vonsovskii, S.V.; Svirskii, M.S. ZhETF1965, 47, 1354. J. Exp. Theor. Phys. 1965, 20, 914. [Google Scholar]
- Lyubutin, I.S.; Struzhkin, V.V.; Mironovich, A.A.; Gavriliuk, A.G.; Naumov, P.G.; Lin, J.F.; Ovchinnikov, S.G.; Sinogeikin, S.; Chow, P.; Xiao, Y.; et al. Quantum critical point and spin fluctuations in lower mantle ferropericlase. Proc. Natl. Acad. Sci. USA 2013, 110, 7142–7147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.W.; Choi, W.S.; Okamoto, S.; Kim, J.-Y.; Kim, K.W.; Moon, S.J.; Cho, D.-Y.; Lee, H.N.; Noh, T.W. Dimensionality control of d-orbital occupation in oxide superlattices. Sci. Rep. 2014, 4, 6124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, N.B.; Ovchinnikov, S.G.; Korshunov, M.M.; Eremin, I.M.; Kazak, N.V. Specific features of spin, charge, and orbital ordering in cobaltites. Phys. Uspekhi 2009, 52, 789–810. [Google Scholar] [CrossRef]
- Bernard, R.; Seikh, M. Cobalt Oxides: From Crystal Chemistry to Physics; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Noguchi, S.; Kawamata, S.; Okuda, K.; Nojiri, H.; Motokawa, M. Evidence for the excited triplet of Co3+ in LaCoO3. Phys. Rev. B 2002, 66, 094404. [Google Scholar] [CrossRef]
- Haverkort, M.W.; Hu, Z.; Cezar, J.C.; Burnus, T.; Hartmann, H.; Reuther, M.; Zobel, C.; Lorenz, T.; Tanaka, A.; Brookes, N.B.; et al. Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 2006, 97, 176405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ropka, Z.; Radwanski, R.J. The Jahn–Teller-effect formation of the non-magnetic state of the Co3+ ion in LaCoO3. Phys. B Condens. Matter 2002, 312–313, 777–779. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Ovchinnikov, S.G.; Orlov, Y.S.; Nekrasov, I.A.; Pchelkina, Z.V. Electronic structure, magnetic properties, and mechanism of the insulator–metal transition in LaCoO3 taking into account strong electron correlations. J. Exp. Theor. Phys. 2011, 112, 140–151. [Google Scholar] [CrossRef]
- Bhide, V.G.; Rajoria, D.S.; Reddy, Y.S.; Rao, G.R.; Subba Rao, G.V.; Rao, C.N.R. Localized-to-itinerant electron transitions in rare-earth cobaltates. Phys. Rev. Lett. 1972, 28, 1133–1136. [Google Scholar] [CrossRef]
- Chang, C.Y.; Lin, B.N.; Ku, H.C.; Hsu, Y.-Y. Occurrence and variation of spin-state transitions in La1-xEuxCoO3 cobaltates. Chin. J. Phys. 2003, 41, 662–670. [Google Scholar]
- Thornton, G.; Morrison, F.C.; Partington, S.; Tofield, B.C.; Williams, D.E. The rare earth cobaltates: Localised or collective electron behaviour? J. Phys. C Solid State Phys. 1988, 21, 2871–2880. [Google Scholar] [CrossRef]
- Yan, J.-Q.; Zhou, J.-S.; Goodenough, J.B. Bond-length fluctuations and the spin-state transition in LCoO3 (L = La, Pr, and Nd). Phys. Rev. B 2004, 69, 134409. [Google Scholar] [CrossRef]
- Ivanova, N.B.; Kazak, N.V.; Michel, C.R.; Balaev, A.D.; Ovchinnikov, S.G.; Vasil’ev, A.D.; Bulina, N.V.; Panchenko, E.B. Effect of strontium and barium doping on the magnetic state and electrical conductivity of GdCoO3. Phys. Solid State 2007, 49, 1498–1506. [Google Scholar] [CrossRef]
- Hoch, M.J.R.; Nellutla, S.; van Tol, J.; Choi, E.S.; Lu, J.; Zheng, H.; Mitchell, J.F. Diamagnetic to paramagnetic transition in LaCoO3. Phys. Rev. B 2009, 79, 214421. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Okimoto, Y.; Tokura, Y. Bandwidth dependence of insulator-metal transitions in perovskite cobalt oxides. Phys. Rev. B 1996, 54, R11022. [Google Scholar] [CrossRef] [PubMed]
- Asai, K.; Yoneda, A.; Yokokura, O.; Tranquada, J.M.; Shirane, G.; Kohn, K. Two spin-state transitions in LaCoO3. J. Phys. Soc. Jpn. 1998, 67, 290–296. [Google Scholar] [CrossRef]
- Ovchinnikov, S.G.; Orlov, Y.S.; Dudnikov, V.A. Temperature and field dependent electronic structure and magnetic properties of LaCoO3 and GdCoO3. J. Magn. Magn. Mater. 2012, 324, 3584–3587. [Google Scholar] [CrossRef]
- Jirák, Z.; Hejtmanek, J.; Knižek, K.; Novak, P.; Šantava, E.; Fujishiro, H. Magnetism of perovskite cobaltites with Kramers rare-earth ions. J. Appl. Phys. 2014, 115, 17E118. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Yoshida, T.; Kawaji, H.; Atake, T.; Takayama-Muromachi, E. Evolution of electronic states in RCoO3 (R = rare earth): Heat capacity measurements. Phys. Rev. B 2008, 77, 094402. [Google Scholar] [CrossRef]
- Dudnikov, V.A.; Orlov, Y.S.; Gavrilkin, S.Y.; Gorev, M.V.; Vereshchagin, S.N.; Solovyov, L.A.; Perov, N.S.; Ovchinnikov, S.G. Effect of Gd and Sr ordering in A sites of doped Gd0.2Sr0.8CoO3−δ perovskite on its structural, magnetic, and thermodynamic properties. J. Phys. Chem. C 2016, 120, 13443–13449. [Google Scholar] [CrossRef]
- Taguchi, H. Electrical properties and spin state of the Co3+ ion in (Nd1−xGdx)CoO3. Phys. B Condens. Matter 2002, 311, 298–304. [Google Scholar] [CrossRef]
- Yu, J.; Phelan, D.; Louca, D. Spin-state transitions in PrCoO3 investigated by neutron scattering. Phys. Rev. B 2011, 84, 132410. [Google Scholar] [CrossRef]
- Umemoto, K.; Seto, Y.; Masuda, Y. Structure and magnetic property of CexEu1−xCoO3 prepared by means of the thermal decomposition of CexEu1−x[Co(CN)6]·nH2O. Thermochimicaacta 2005, 431, 117–122. [Google Scholar] [CrossRef]
- Brinks, H.W.; Fjellvasg, H.; Kjekshus, A.; Hauback, B.C. Structure and magnetism of Pr1− xSrxCoO3−δ. J. Solid State Chem. 1999, 147, 464–477. [Google Scholar] [CrossRef]
- Spinicci, R.; Faticanti, M.; Marini, P.; De Rossi, S.; Porta, P. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003, 197, 147–155. [Google Scholar] [CrossRef]
- Takeda, Y.; Ueno, H.; Imanishi, N.; Yamamoto, O.; Sammes, N.; Phillipps, M.B. Gd1−xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ion. 1996, 86, 1187–1190. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.P.; Rahm, E.; Holze, R.; Wu, H.Q. Cathode materials for lithium ion batteries prepared by sol-gel methods. J. Solid State Electrochem. 2004, 8, 450–466. [Google Scholar] [CrossRef]
- Teraoka, Y.; Zhang, H.M.; Okamoto, K.; Yamazoe, N. Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides. Mater. Res. Bull. 1988, 23, 51–58. [Google Scholar] [CrossRef]
- Michel, C.R.; Gago, A.S.; Guzmán-Colín, H.; López-Mena, E.R.; Lardizábal, D.; Buassi-Monroy, O.S. Electrical properties of the perovskite Y0.9Sr0.1CoO3−δ prepared by a solution method. Mater. Res. Bull. 2004, 39, 2295–2302. [Google Scholar] [CrossRef]
- Orlov, Y.S.; Solovyov, L.A.; Dudnikov, V.A.; Fedorov, A.S.; Kuzubov, A.A.; Kazak, N.V.; Voronov, V.N.; Vereshchagin, S.N.; Shishkina, N.N.; Perov, N.S.; et al. Structural properties and high-temperature spin and electronic transitions in GdCoO3: Experiment and theory. Phys. Rev. B 2013, 88, 235105. [Google Scholar] [CrossRef]
- Solovyov, L.A. Full-profile refinement by derivative difference minimization. J. Appl. Crystallogr. 2004, 37, 743–749. [Google Scholar] [CrossRef]
- Kharko, O.V.; Vasylechko, L.O.; Ubizskii, S.B.; Pashuk, A.; Prots, Y. Structural behavior of continuous solid solution SmCo1-xFexO3. Funct. Mater. 2014, 21, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Knížek, K.; Hejtmánek, J.; Jirák, Z.; Tomeš, P.; Henry, P.; André, G. Neutron diffraction and heat capacity studies of PrCoO3 and NdCoO3. Phys. Rev. B 2009, 79, 134103. [Google Scholar] [CrossRef] [Green Version]
- Orlov, Y.S.; Dudnikov, V.A.; Gorev, M.V.; Vereshchagin, S.N.; Solov’ev, L.A.; Ovchinnikov, S.G. Thermal properties of rare earth cobalt oxides and of La1–xGdxCoO3 solid solutions. JETP Lett. 2016, 103, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Seijas, J.G.; Prado-Gonjal, J.; Brande, D.A.; Terry, I.; Moran, E.; Schmidt, R. Microwave-assisted synthesis, microstructure, and magnetic properties of rare-earth cobaltites. Inorg. Chem. 2016, 56, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Panfilov, A.S.; Grechnev, G.E.; Lyogenkaya, A.A.; Pashchenko, V.A.; Zhuravleva, I.P.; Vasylechko, L.O.; Hreb, V.M.; Turchenko, V.A.; Novoselov, D. Magnetic properties of RCoO3 cobaltites (R = La, Pr, Nd, Sm, Eu). Effects of hydrostatic and chemical pressure. Phys. B Condens. Matter 2019, 553, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Vonsovsky, S.V. Magnetism; Nauka: Moscow, Russia, 1971; p. 1032. [Google Scholar]
- Ivanova, N.B.; Kazak, N.V.; Michel, C.R.; Balaev, A.D.; Ovchinnikov, S.G. Low-temperature magnetic behavior of the rare-earth cobaltites GdCoO3 and SmCoO3. Phys. Solid State 2007, 49, 2126–2131. [Google Scholar] [CrossRef]
- Ropka, Z.; Radwanski, R.J. 5D term origin of the excited triplet in LaCoO3. Phys. Rev. B 2003, 67, 172401. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Matveev, V.M.; Mukhin, A.A.; Popov, A.I. Rare Earth Ions in Magnetically Ordered Crystals; Moscow Izdatel Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- VanVleck, J.H. The Theory of Electronic and Magnetic Susceptibilities; Oxford University Press: Oxford, UK, 1932. [Google Scholar]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non Crystalline Materials; Clarendon Press: Oxford, UK, 1971; p. 437. [Google Scholar]
- Berggold, K.; Kriener, M.; Zobel, C.; Reichl, A.; Reuther, M.; Müller, R.; Freimuth, A.; Lorenz, T. Thermal conductivity, thermopower, and figure of merit of La1−xSrxCoO3. Phys. Rev. B 2005, 72, 155116. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, B.; Harvey, A.S.; Tanasescu, S.; Teodorescu, F.; Botea, A.; Conder, K.; Grundy, A.N.; Martynczuk, J.; Gauckler, L.J. Correlation between electrical properties and thermodynamic stability of A CoO3−δ perovskites (A = La, Pr, Nd, Sm, Gd). Phys. Rev. B 2011, 84, 085113. [Google Scholar] [CrossRef] [Green Version]
- Nagaev, E.L.; Podel’shchikov, A.I. Phase separation and resistivity jumps in Co compounds and other materials with low-spin-high-spin transitions. J. Phys. Condens. Matter 1996, 8, 5611–5620. [Google Scholar] [CrossRef]
- Giblin, S.R.; Terry, I.; Clark, S.J.; Prokscha, T.; Prabhakaran, D.; Boothroyd, A.T.; Wu, J.; Leighton, C. Observation of magnetic excitons in LaCoO3. Europhys. Lett. 2005, 70, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Vasil’chikova, T.N.; Kuz’mova, T.G.; Kamenev, A.A.; Kaul’, A.R.; Vasil’ev, A.N. Spin states of cobalt and the thermodynamics of Sm1-xCaxCoO3-δ solid solutions. JETP Lett. 2013, 97, 34–37. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
NdCoO3 | SmCoO3 | |||||||
---|---|---|---|---|---|---|---|---|
T, K | a, Å | b, Å | c, Å | V, Å3 | a, Å | b, Å | c, Å | V, Å3 |
300 | 5.3478(1) | 5.3324(1) | 7.5505(2) | 215.32(1) | 5.2887(1) | 5.3517(3) | 7.5031(2) | 212.37(1) |
400 | 5.3591(1) | 5.3463(2) | 7.5677(2) | 216.82(1) | 5.2961(1) | 5.3572(1) | 7.5130(2) | 213.16(1) |
500 | 5.3733(1) | 5.3649(1) | 7.5909(3) | 218.82(1) | 5.3082(1) | 5.3726(1) | 7.5291(1) | 214.72(1) |
600 | 5.3907(2) | 5.3888(1) | 7.6176(2) | 221.29(1) | 5.3246(1) | 5.3985(1) | 7.5521(1) | 217.08(1) |
700 | 5.4067(1) | 5.4106(1) | 7.6427(3) | 223.57(1) | 5.3423(1) | 5.4292(1) | 7.5777(1) | 219.78(1) |
800 | 5.4208(1) | 5.4270(1) | 7.6635(1) | 225.45(1) | 5.3573(1) | 5.4519(1) | 7.6001(1) | 221.98(1) |
900 | 5.4332(1) | 5.4404(1) | 7.6819(2) | 227.07(1) | 5.3707(1) | 5.4683(1) | 7.6197(1) | 223.78(1) |
1000 | 5.4451(1) | 5.4521(2) | 7.6989(3) | 228.56(1) | 5.3831(1) | 5.4816(1) | 7.6380(1) | 225.38(1) |
(K) | (K) | µB | µB | µB | ||||
---|---|---|---|---|---|---|---|---|
NdCoO3 | 165 | 250 | 0.956 | 0.00201 | 2.77 | 3.62 | 3.68 | 0.99993 |
SmCoO3 | 15 | 270 | 0.03504 | 0.00202 | 0.53 | 0.84 | 1.55 | 0.99999 |
T*, K | T**, K | |||||||
---|---|---|---|---|---|---|---|---|
, eV | , mOhm·cm | , eV | , mOhm·cm | |||||
NdCoO3 | 395 | 0.379 ± 0.001 | 0.390 ± 0.001 | 0.99955 | 0.679 ± 0.001 | 5.81 × 10−5 | 0.99991 | 590 |
SmCoO3 | 460 | 0.394 ± 0.001 | 0.401 ± 0.001 | 0.99893 | 0.739 ± 0.001 | 6.56 × 10−5 | 0.99944 | 650 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudnikov, V.A.; Orlov, Y.S.; Solovyov, L.A.; Vereshchagin, S.N.; Gavrilkin, S.Y.; Tsvetkov, A.Y.; Velikanov, D.A.; Gorev, M.V.; Novikov, S.V.; Ovchinnikov, S.G. Effect of Multiplicity Fluctuation in Cobalt Ions on Crystal Structure, Magnetic and Electrical Properties of NdCoO3 and SmCoO3. Molecules 2020, 25, 1301. https://doi.org/10.3390/molecules25061301
Dudnikov VA, Orlov YS, Solovyov LA, Vereshchagin SN, Gavrilkin SY, Tsvetkov AY, Velikanov DA, Gorev MV, Novikov SV, Ovchinnikov SG. Effect of Multiplicity Fluctuation in Cobalt Ions on Crystal Structure, Magnetic and Electrical Properties of NdCoO3 and SmCoO3. Molecules. 2020; 25(6):1301. https://doi.org/10.3390/molecules25061301
Chicago/Turabian StyleDudnikov, Vyacheslav A., Yuri S. Orlov, Leonid A. Solovyov, Sergey N. Vereshchagin, Sergey Yu. Gavrilkin, Alexey Yu. Tsvetkov, Dmitriy A. Velikanov, Michael V. Gorev, Sergey V. Novikov, and Sergey G. Ovchinnikov. 2020. "Effect of Multiplicity Fluctuation in Cobalt Ions on Crystal Structure, Magnetic and Electrical Properties of NdCoO3 and SmCoO3" Molecules 25, no. 6: 1301. https://doi.org/10.3390/molecules25061301
APA StyleDudnikov, V. A., Orlov, Y. S., Solovyov, L. A., Vereshchagin, S. N., Gavrilkin, S. Y., Tsvetkov, A. Y., Velikanov, D. A., Gorev, M. V., Novikov, S. V., & Ovchinnikov, S. G. (2020). Effect of Multiplicity Fluctuation in Cobalt Ions on Crystal Structure, Magnetic and Electrical Properties of NdCoO3 and SmCoO3. Molecules, 25(6), 1301. https://doi.org/10.3390/molecules25061301