Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Single Factor
2.1.1. Ethanol Volume Fraction
2.1.2. Liquid–Solid Ratio
2.2. Analysis of Extraction Kinetics
2.2.1. Under Various Ultrasound Irradiation Powers
2.2.2. Under Various Ultrasound Frequencies
2.2.3. Under Various Reaction Temperatures
2.3. The Thermodynamic Parameters
2.4. Optimization of Extraction Procedure
2.4.1. Analysis of the Response Contour
2.4.2. Verification Tests
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Experimental Apparatus
3.3. Ultrasound-Assisted Extraction Procedure
3.4. Modeling of Extraction Kinetics
3.5. Thermodynamic Characteristics
3.6. HPLC Instruments and Quantitative Conditions
3.7. Optimization of Extraction Procedure with RSM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yi, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.K.; Choi, K.; Joo, M.; Yang, J.C.; Mustafina, F.U.; Han, J.S.; Son, D.C.; Chang, K.S.; Shin, C.H.; Lee, Y.M. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae). J. Asia. Pac. Biodivers. 2016, 9, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ye, L.; Li, J.; Guan, S. Primary report of the breeding experiment on Khingan fir. Forest Investigation Design 2006, 138, 47–49. [Google Scholar]
- Dong, J. Preliminary study on seedling technique of Abies nephrolepis in Wutai mountain. Forest. Shanxi 2018, 253, 24–25. (In Chinese) [Google Scholar]
- Li, Y.; Wu, L.; Ouyang, D.; Yu, P.; Xia, J.; Pan, Y.; Yang, X.; Zeng, H.; Cheng, X.; Jin, H. Phenolic compounds of Abies nephrolepis and their NO production inhibitory activities. Chem. Biodivers. 2011, 8, 2299–2309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gu, H.; Yang, L. A novel approach for the simultaneous extraction of dihydroquercetin and arabinogalactan from Larix gmelinii by homogenate-ultrasound-synergistic technique using the ionic liquid. J. Mol. Liq. 2018, 261, 41–49. [Google Scholar] [CrossRef]
- Awad, E.; Awaad, A.S.; Esteban, M.A. Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2015, 43, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Xu, S.; Lyu, Y.; Zhou, S.; Du, G.; Chen, J.; Zhou, J. Engineering enzymatic cascades for efficient biotransformation of eugenol and taxifolin to silybin and isosilybin. Green Chem. 2019, 21, 1660–1667. [Google Scholar] [CrossRef]
- Shu, Z.; Yang, Y.; Yang, L.; Jiang, H.; Yu, X.; Wang, Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct. 2019, 10, 203–215. [Google Scholar] [CrossRef]
- Moon, S.H.; Lee, C.M.; Nam, M.J. Cytoprotective effects of taxifolin against cadmium-induced apoptosis in human keratinocytes. Hum. Exp. Toxicol. 2019, 38, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Saito, S.; Tanaka, M.; Yamakage, H.; Kusakabe, T.; Shimatsu, A.; Ihara, M.; Satoh-Asahara, N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. 2019, 116, 10031–10038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Zhao, X.; Ji, N.; Shao, C.; Fu, B.; Zhang, Z.; Wang, R.; Qiu, Y.; Jin, M.; Kong, D. Inhibitory effect of taxifolin on mast cell activation and mast cell-mediated allergic inflammatory response. Int. Immunopharmacol. 2019, 71, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Eken, H.; Cimen, O.; Cimen, F.K.; Kurnaz, E.; Yildirim, M.; Tasova, V.; Kurt, N.; Pehlivanoglu, K.; Onk, D.; Bilgin, A.O. Effect of taxifolin on oxidative gastric injury induced by celiac artery ligation in rats. Acta Cir. Bras. 2019, 34, e201900404. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.; Langeshwaran, K.; Selvaraj, J.; Ponnulakshmi, R.; Shyamaladevi, B.; Balasubramanian, M.P. Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Mol. Cell. Biochem. 2018, 449, 27–37. [Google Scholar] [CrossRef]
- Sabarimuthu, S.Q.; Ponnian, S.M.P.; John, B. Diosmin prevents left ventricular hypertrophy, adenosine triphosphatases dysfunction and electrolyte imbalance in experimentally induced myocardial infarcted rats. Eur. J. Pharmacol. 2017, 814, 124–129. [Google Scholar] [CrossRef]
- Nwaeburu, C.C.; Abukiwan, A.; Zhao, Z.; Herr, I. Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Mol. Cancer 2017, 16, 23. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, G.B.; da Silva, S.C.; Romeiro, T.H.; Beggiora, P.D.S.; Machado, H.R.; Lopes, L.D.S. Evaluation of the effects of quercetin on brain lesions secondary to experimental hydrocephalus in rats. Childs Nerv. Syst. 2019, 35, 2299–2306. [Google Scholar] [CrossRef]
- Luo, M.; Tian, R.; Yang, Z.; Peng, Y.; Lu, N. Quercetin suppressed NADPH oxidase-derived oxidative stress via heme oxygenase-1 induction in macrophages. Arch. Biochem. Biophys. 2019, 671, 69–76. [Google Scholar] [CrossRef]
- Du, L.; Li, C.; Qian, X.; Chen, Y.; Wang, L.; Yang, H.; Li, X.; Li, Y.; Yin, X.; Lu, Q. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol. Res. 2019, 146, 104320. [Google Scholar]
- Fan, Z.; Chen, K.; Gao, X.; Bao, Y. Extraction optimization and antioxidant activity of polyphenols from the needles of five pine species. Mod. Food Sci. Technol. 2017, 33, 211–220. [Google Scholar]
- Lee, S.; Lee, K.; Lee, H. Abies nephrolepis leaf phenolics prevent the inhibition of gap junction intercellular communication by hydrogen peroxide in rat liver epithelial cells. BioFactors 2004, 21, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Wei, M.; Yang, L. Determination of orientin in Trollius chinensis using ultrasound-assisted extraction and high performance liquid chromatography: Several often-overlooked sample preparation parameters in an ultrasonic bath. J. Chromatogr. A 2017, 1530, 68–79. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Z.; Liu, D.; Shi, G.; Liu, D.; Yang, Y.; Gu, H.; Yang, L.; Zhou, Z. Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis-idaea L.) pomace. Ind. Crops Prod. 2019, 138, 111425. [Google Scholar] [CrossRef]
- Rouhani, M. Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia Rebaudiana. Ind. Crops Prod. 2019, 132, 226–235. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Zu, Y.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chem. Eng. J. 2011, 175, 539–547. [Google Scholar] [CrossRef]
- Ma, C.; Liu, T.; Yang, L.; Zu, Y.; Wang, S.; Zhang, R. Study on ionic liquid-based ultrasonic-assisted extraction of biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Anal. Chim. Acta 2011, 689, 110–116. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zu, Y.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011, 172, 705–712. [Google Scholar] [CrossRef]
- Lin, T.; Liu, Y.; Lai, C.; Yang, T.; Xie, J.; Zhang, Y. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind. Crops Prod. 2018, 125, 150–159. [Google Scholar] [CrossRef]
- Stevanato, N.; da Silva, C. Radish seed oil: Ultrasound-assisted extraction using ethanol as solvent and assessment of its potential for ester production. Ind. Crops Prod. 2019, 132, 283–291. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Zhao, L.; Wang, Y.; Liao, X. Comparison of the compounds and characteristics of pepper seed oil by pressure-assisted, ultrasound-assisted and conventional solvent extraction. Innovative Food Sci. Emerging Technol. 2019, 54, 78–86. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Volf, I.; Popa, V.I. A comparative analysis of the ’green’ techniques applied for polyphenols extraction from bioresources. Chem. Biodivers. 2015, 12, 1635–1651. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Jia, J.; Zhang, Q.; Yang, L.; Gu, H. Isolation of essential oil from the leaves of Polygonum viscosum Buch-ham. using microwave-assisted enzyme pretreatment followed by microwave hydrodistillation concatenated with liquid–liquid extraction. Ind. Crops Prod. 2018, 112, 327–341. [Google Scholar] [CrossRef]
- Ha, G.S.; Kim, J.H. Kinetic and thermodynamic characteristics of ultrasound-assisted extraction for recovery of paclitaxel from biomass. Process Biochem. 2016, 51, 1664–1673. [Google Scholar] [CrossRef]
- Sonali, T.; Praful, D.; Sachin, M.; Sayaji, M. Kinetic and thermodynamic azadirachtin extraction from whole neem fine powder formulation. Indian J. Chem. Technol. 2017, 24, 218–222. [Google Scholar]
- Handayani, A.D.; Sutrisno Indraswati, N.; Ismadji, S. Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresour. Technol. 2008, 99, 4414–4419. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Sun, D. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrason. Sonochem. 2014, 21, 1461–1469. [Google Scholar] [CrossRef]
- Porto, C.D.; Natolino, A. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chem. 2018, 258, 137–143. [Google Scholar] [CrossRef]
- Authier, O.; Ouhabaz, H.; Bedogni, S. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide. Ultrason. Sonochem. 2018, 45, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Raso, J.; Mañas, P.; Pagán, R.; Sala, F.J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason. Sonochem. 1999, 5, 157–162. [Google Scholar] [CrossRef]
- Muniraj, S.; Shih, H.K.; Chen, Y.F.; Hsiech, C.; Ponnusamy, V.K.; Jen, J.F. Novel one-step headspace dynamic in-syringe liquid phase derivatization–extraction technique for the determination of aqueous aliphatic amines by liquid chromatography with fluorescence detection. J. Chromatogr. A 2013, 1296, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Villa-Vélez, H.A.; Cornelio, M.L.; Corrêa, J.L.G.; Telis-Romero, J. Identification of acoustic fields in aqueous biomass solutions of banana waste pretreated by power ultrasound. Biomass Convers. Biorefin. 2018, 8, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Vishnu, P.M.; Ramesh, K.; Sivakumar, P.; Balasubramanian, R.; Anirbid, S. Kinetic and thermodynamic studies on the extraction of bio oil from Chlorella vulgaris and the subsequent biodiesel production. Chem. Eng. Commun. 2018, 206, 409–418. [Google Scholar]
- Krishnan, R.Y.; Rajan, K.S. Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Sep. Purif. Technol. 2016, 157, 169–178. [Google Scholar] [CrossRef]
- Meziane, S.; Kadi, H. Kinetics and thermodynamics of oil extraction from olive cake. J. Am. Oil Chem. Soc. 2008, 85, 391–396. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Pang, X.; Hua, P.; Gao, X.; Li, Q.; Li, Z. Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of Angelica keiskei using response surface methodology (RSM). Molecules 2019, 24, 3461. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, J.H. Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 2019, 76, 187–193. [Google Scholar] [CrossRef]
- Yang, L.; Yin, P.; Fan, H.; Xue, Q.; Li, K.; Li, X.; Sun, L.; Liu, Y. Response surface methodology optimization of ultrasonic-assisted extraction of Acer truncatum leaves for maximal phenolic yield and antioxidant activity. Molecules 2017, 22, 232. [Google Scholar] [CrossRef] [Green Version]
- Jaswir, I.; Noviendri, D.; Taher, M.; Mohamed, F.; Octavianti, F.; Lestari, W.; Mukti, A.G.; Nirwandar, S.; Hamad Almansori, B.B. Optimization and formulation of fucoxanthin-loaded microsphere (F-LM) using response surface methodology (RSM) and analysis of its fucoxanthin release profile. Molecules 2019, 24, 947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the extracts of taxifolin, diosmin and quercetin from Abies nephrolepis are available from the authors. |
Plant Part | Target Analyte | Temperature (K) | Parameters | ||||
---|---|---|---|---|---|---|---|
k (mg/g/min) | R2 | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/mol K) | |||
Leave | Taxifolin | 293.15 | 0.69 | 0.9871 | −20.94 | 21.92 | 71.41 |
303.15 | 0.87 | −21.65 | |||||
313.15 | 1.19 | −22.36 | |||||
323.15 | 1.45 | −23.08 | |||||
333.15 | 2.08 | −23.79 | |||||
Diosmin | 293.15 | 0.74 | 0.9861 | −22.71 | 23.57 | 77.56 | |
303.15 | 0.94 | −23.49 | |||||
313.15 | 1.32 | −24.26 | |||||
323.15 | 1.63 | −25.04 | |||||
333.15 | 2.41 | −25.81 | |||||
Quercetin | 293.15 | 0.83 | 0.9788 | −25.16 | 25.85 | 85.90 | |
303.15 | 0.99 | −26.01 | |||||
313.15 | 1.44 | −26.87 | |||||
323.15 | 1.97 | −27.73 | |||||
333.15 | 2.91 | −28.59 | |||||
Bark | Taxifolin | 293.15 | 0.02 | 0.9943 | −0.62 | 10.31 | 2.14 |
303.15 | 0.02 | −0.64 | |||||
313.15 | 0.03 | −0.66 | |||||
323.15 | 0.03 | −0.68 | |||||
333.15 | 0.03 | −0.70 | |||||
Diosmin | 293.15 | 0.57 | 0.9876 | −18.49 | 19.95 | 63.14 | |
303.15 | 0.70 | −19.12 | |||||
313.15 | 0.94 | −19.75 | |||||
323.15 | 1.12 | −20.38 | |||||
333.15 | 1.55 | −21.01 | |||||
Quercetin | 293.15 | 0.80 | 0.9827 | −24.80 | 25.50 | 84.68 | |
303.15 | 1.02 | −25.65 | |||||
313.15 | 1.49 | −26.49 | |||||
323.15 | 1.84 | −27.34 | |||||
333.15 | 2.87 | −28.19 |
Source a | Sum of Squares | Df | Mean Square | F | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YLeavesc | YBark | YLeaves | YBark | YLeaves | YBark | YLeaves | YBark | YLeaves | YBark | |||
Model | 1246.53 | 164.04 | 9 | 9 | 138.50 | 18.23 | 16.15 | 10.95 | 0.0007 | 0.0023 | Significant d | |
X1b | 23.23 | 15.58 | 1 | 1 | 23.23 | 15.58 | 2.71 | 9.35 | 0.1438 | 0.0184 | ||
X2 | 84.38 | 0.01 | 1 | 1 | 84.38 | 0.01 | 9.84 | 0.01 | 0.0165 | 0.9343 | ||
X3 | 666.56 | 37.43 | 1 | 1 | 666.56 | 37.43 | 77.71 | 22.47 | <0.0001 | 0.0021 | ||
X1X2 | 27.18 | 3.38 | 1 | 1 | 27.18 | 3.38 | 3.17 | 2.03 | 0.1183 | 0.1972 | ||
X1X3 | 3.84 | 5.38 | 1 | 1 | 3.84 | 5.38 | 0.45 | 3.23 | 0.5248 | 0.1152 | ||
X2X3 | 39.09 | 3.20 | 1 | 1 | 39.09 | 3.20 | 4.56 | 1.92 | 0.0702 | 0.2083 | ||
X12 | 193.40 | 54.95 | 1 | 1 | 193.40 | 54.95 | 22.55 | 33.00 | 0.0021 | 0.0007 | ||
X22 | 68.93 | 9.30 | 1 | 1 | 68.93 | 9.30 | 8.04 | 5.58 | 0.0252 | 0.0501 | ||
X32 | 100.05 | 25.83 | 1 | 1 | 100.05 | 25.83 | 11.66 | 15.51 | 0.0112 | 0.0056 | ||
Residual | 60.04 | 11.66 | 7 | 7 | 8.58 | 1.67 | ||||||
Lack of Fit | 18.11 | 0.23 | 3 | 3 | 6.04 | 0.08 | 0.58 | 0.03 | 0.6608 | 0.9933 | Not significant | |
Pure Error | 41.93 | 11.43 | 4 | 4 | 10.48 | 2.86 | ||||||
Cor Total | 1306.57 | 175.70 | 16 | 16 | ||||||||
Std. dev. | Mean | C.V. % | PRESS | R2 | Adj R2 | Pred R2 | Adeq precision | |||||
YLeaves | 2.93 | 92.61 | 3.16 | 355.28 | 0.9540 | 0.8950 | 0.7281 | 11.0190 | ||||
YBark | 1.29 | 13.33 | 9.68 | 21.47 | 0.9337 | 0.8484 | 0.8778 | 8.5750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Zhao, R.; Peng, X.; Feng, C.; Gu, H.; Yang, L. Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics. Molecules 2020, 25, 1401. https://doi.org/10.3390/molecules25061401
Wei M, Zhao R, Peng X, Feng C, Gu H, Yang L. Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics. Molecules. 2020; 25(6):1401. https://doi.org/10.3390/molecules25061401
Chicago/Turabian StyleWei, Mengxia, Ru Zhao, Xiaojin Peng, Chunte Feng, Huiyan Gu, and Lei Yang. 2020. "Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics" Molecules 25, no. 6: 1401. https://doi.org/10.3390/molecules25061401
APA StyleWei, M., Zhao, R., Peng, X., Feng, C., Gu, H., & Yang, L. (2020). Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics. Molecules, 25(6), 1401. https://doi.org/10.3390/molecules25061401