Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes
Abstract
:1. Introduction
2. Results
2.1. The Identification of Siberian fir (Abies sibirica L.) Polyprenol Homologs
2.2. The Solubility of Polyprenols in Ethanol and Ethanolic Solution of Lecithin
2.3. Morphological Observations of Polyprenol-Loaded Liposomes
3. Discussion
4. Experimental Section
4.1. Materials and Instruments
4.2. Sample Clean-up for UHPLC Analysis
4.3. Sample Preparation for UHPLC Analysis
4.4. Reverse-Phase UHPLC Analysis
4.5. Identification of Polyprenols by TOF LC/MS
4.6. Preparation of Proliposomal Polyprenol Solution 1:17 w/w
4.7. Determination of Solubility of Polyprenols in Ethanol and Ethanolic Solution of Lecithin
4.8. Determination of Incorporation Efficiency of the Polyprenols in Liposomes
4.9. The HPLC Determination of Polyprenols in Liposomes
4.10. Preparation of Polyprenol Liposomes for Light and Electron Microscopy
4.11. Size Distribution of Liposomes containing Polyprenols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fedotova, J.; Soultanov, V.; Nikitina, T.; Roschin, V.; Ordyan, N.; Hritcu, L. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25–35) rat model of Alzheimer’s disease. Physiol. Behav. 2016, 157, 55–62. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.Z.; Ye, J.Z.; Li, H.T. Hepatoprotective effects of polyprenols from Ginkgo biloba L. leaves on CCl4-induced hepatotoxicity in rats. Fitoterapia 2011, 82, 834–840. [Google Scholar] [CrossRef]
- Pronin, A.V.; Narovlyansky, A.N.; Shulzhenko, A.E.; Sanin, A.V.; Sedov, A.M. New polyprenyl phosphate-based preparation Fortepren®as promising cytokine regulationg antiviral remedy. Cytokine Growth Factor Rev. 2016, 30, 119–126. [Google Scholar] [CrossRef]
- Jansone, B.; Dzirkale, Z.; Jekabsons, K.; Pilipenko, V.; Beitnere, U.; Magure, I.; Skumbiņš, R.; Kletnieks, U.; Vanaga, I.; Muceniece, R.; et al. Spruce needle polyprenols protect against atorvastatin-induced muscle weakness and do not influence central nervous system functions in rats. Proc. Latv. Acad. Sci. Sect. B: Nat. Exact Appl. Sci. 2016, 70. [Google Scholar] [CrossRef] [Green Version]
- Latkovskis, G.; Saripo, V.; Sokolova, E.; Upite, D.; Vanaga, I.; Kletnieks, U.; Erglis, A. Pilot study of safety and efficacy of polyprenols in combination with coenzyme Q10 in patients with statin-induced myopathy. Med. (Lith.) 2016, 52. [Google Scholar] [CrossRef] [PubMed]
- Swiezewska, E.; Danikiewicz, W. Polyisoprenoids: Structure, biosynthesis and function. Prog. Lipid Res. 2005, 44, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Votruba, J. Chromatography of long chain alcohols (polyprenols) from animal and plant sources. J. Chromatogr. A 2001, 936, 95–110. [Google Scholar] [CrossRef]
- Tao, R.; Wang, C.; Ye, J.; Zhou, H.; Chen, H.; Tao, R.; Wang, C.; Ye, J.; Zhou, H.; Chen, H. Polyprenols of Ginkgo biloba Enhance Antibacterial Activity of Five Classes of Antibiotics. Biomed. Res. Int. 2016, 2016, 1–8. [Google Scholar]
- Van Beek, T.A.; Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef]
- Wang, C.Z.; Li, W.J.; Tao, R.; Ye, J.Z.; Zhang, H.Y. Antiviral activity of a nanoemulsion of polyprenols from ginkgo leaves against influenza A H3N2 and hepatitis B virus in vitro. Molecules 2015, 20, 5137–5151. [Google Scholar] [CrossRef] [Green Version]
- Danilov, L.L.; Druzhinina, T.N. Chemical synthesis of dolichyl phosphates, their analogues and derivatives and application of these compounds in biochemical assays. Acta Biochim. Pol. 2007, 54, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Koseki, K.; Yamashita, S.; Takahashi, S.; Koyama, T. Novel fluorescent analogues for transmembrane movement study of polyprenyl phosphates. Bioorganic Med. Chem. Lett. 2007, 17, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, V.V.; Danilov, L.L. Separation of Polyprenyl Phosphate Oligomerhomologues by Reversed-Phase Ion-Pair High-Performance Liquid Chromatography. Anal. Sci. 2012, 28, 1021–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Z.; Eichler, J. Liquid chromatography/tandem mass spectrometry of dolichols and polyprenols, lipid sugar carriers across evolution. Biochim. Et Biophys. Acta 2011, 1811, 800–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiezewska, E.; Sasak, W.; Mańkowski, T.; Jankowski, W.; Vogtman, T.; Krajewska, I.; Hertel, J.; Skoczylas, E.; Chojnacki, T. The search for plant polyprenols. Acta Biochim. Pol. 1994, 41, 221–260. [Google Scholar] [CrossRef]
- Muceniece, R.; Namniece, J.; Nakurte, I.; Jekabsons, K.; Riekstina, U.; Jansone, B. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin. Pharmacol. Res. 2016, 113, 760–770. [Google Scholar] [CrossRef]
- Phapal, S.M.; Has, C.; Sunthar, P. Spontaneous formation of single component liposomes from a solution. Chem. Phys. Lipids 2017, 205, 25–33. [Google Scholar] [CrossRef]
- Mohanraj, V.; Chen, Y.; Chen, M. Nanoparticles—A Review. Trop. J. Pharm. Res. Trop J. Pharm Res. 2006, 5, 561–573. [Google Scholar]
- Fathi, M.; Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate-based delivery systems. Trends Food Sci. Technol. 2014, 39, 18–39. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 640–653. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K.; Generalov, R.; et al. Review Article liposome: Methods of preparation and applications. Int. J. Pharm. Stud. Res. 2012, 3, 14–20. [Google Scholar]
- Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv. 1995, 70, 95–111. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J.R. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014, 177, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Ag Seleci, D.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Stevenson, J.; Hemming, F.W.; Morton, R.A. The characterization and properties of castaprenol-11, -12 and -13 from the leaves of Aesculus hippocastanum (horse chestnut). Biochem. J. 1967, 102, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.B.; Rosenberg, J.N.; Betenbaugh, M.J.; Krag, S.S. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim. Et Biophys. Acta - Gen. Subj. 2009, 1790, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Surmacz, L.; Swiezewska, E. Polyisoprenoids - Secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 2011, 407, 627–632. [Google Scholar] [CrossRef]
- Bespalov, V.; Sherbakov, A.; Novik, V.; Kalinovsky, V.; Shamsi, K.; Soultanov, V. Conifer Green Needle Complex in Patients with Precancerous Gastric Lesions: An Observational Pilot Study. Evid. Based Complementary Altern. Med. 2016, 2016. [Google Scholar] [CrossRef]
- Ciepichal, E.; Wojcik, J.; Bienkowski, T.; Kania, M.; Swist, M.; Danikiewicz, W.; Marczewski, A.; Hertel, J.; Matysiak, Z.; Swiezewska, E.; et al. Alloprenols: Novel α-trans-polyprenols of Allophylus caudatus. Chem. Phys. Lipids 2007, 147, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Chouda, M.; Jankowski, W.W.J.; Swiezewska, E.; Sasak, W.; Chojnacki, T. Occurrence of Polyprenols and Dolichols in Plants. J. Plant. Physiol. 1994, 143, 448–452. [Google Scholar]
- Zhang, Q.; Huang, L.; Zhang, C.; Xie, P.; Zhang, Y.; Ding, S.; Xu, F. Synthesis and biological activity of polyprenols. Fitoterapia 2015, 106, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-W.; Wang, C.-Z.; Tao, R.; Ye, J.-Z. Separation of polyprenols from Ginkgo biloba leaves by a nano silica-based adsorbent containing silver ions. J. Chromatogr. A 2019, 1590, 58–64. [Google Scholar] [CrossRef]
- Janas, T.; Kuczera, J.; Chojnacki, T. Voltammetric analysis of polyisoprenoid-containing bilayer lipid membranes. Chem. Phys. Lipids 1989, 51, 227–238. [Google Scholar] [CrossRef]
- Janas, T.; Nowotarski, K.; Gruszecki, W.I.; Janas, T. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes. Acta Biochim. Pol. 2000, 47, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Streiff, S.; Ribeiro, N.; Wu, Z.; Gumienna-Kontecka, E.; Elhabiri, M.; Albrecht-Gary, A.M.; Ourisson, G.; Nakatani, Y. “Primitive” Membrane from Polyprenyl Phosphates and Polyprenyl Alcohols. Chem. Biol. 2007, 14, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Gawrys, O.; Olszyński, K.H.; Gawarecka, K.; Swiezewska, E.; Chojnacki, T.; Masnyk, M.; Chmielewski, M.; Kompanowska-Jezierska, E. Cationic derivative of polyprenol, a potential component of liposomal drug carriers, does not alter renal function in rats. Eur. J. Lipid Sci. Technol. 2014, 116, 659–662. [Google Scholar] [CrossRef]
- Fedotova, J.; Soultanov, V.; Nikitina, T.; Roschin, V.; Ordyan, N.; Hritcu, L. Ropren®treatment reverses anxiety-like behavior and monoamines levels in gonadectomized rat model of Alzheimer’s disease. Biomed. Pharmacother. 2016, 83, 1444–1455. [Google Scholar] [CrossRef]
- Safatov, A.S.; Boldyrev, A.N.; Bulychev, L.E.; Buryak, G.A.; Kukina, T.P.; Poryvaev, V.D.; P’Yankov, O.V.; Raldugin, V.A.; Ryzhikov, A.B.; Sergeev, A.N.; et al. A Prototype Prophylactic Anti-Influenza Preparation in Aerosol Form on the Basis of Abies sibirica Polyprenols. J. Aerosol Med. 2005, 18, 55–62. [Google Scholar] [CrossRef]
- Ibata, K.; Kageyu, A.; Takigawa, T.; Okada, M.; Nishida, T.; Mizuno, M.; Tanaka, Y. Polyprenols from conifers: Multiplicity in chain length distribution. Phytochemistry 1984, 23, 2517–2521. [Google Scholar] [CrossRef]
- Ciepichal, E.; Jemiola-Rzeminska, M.; Hertel, J.; Swiezewska, E.; Strzalka, K. Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chem. Phys. Lipids 2011, 164, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Gawrys, O.; Polkowska, M.; Roszkowska-Chojecka, M.; Gawarecka, K.; Chojnacki, T.; Swiezewska, E.; Masnyk, M.; Chmielewski, M.; Rafałowska, J.; Kompanowska-Jezierska, E. Effects of liposomes with polyisoprenoids, potential drug carriers, on the cardiovascular and excretory system in rats. Pharmacol. Rep. 2014, 66, 273–278. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008, 226, 583–590. [Google Scholar] [CrossRef]
- Katsikas, H.; Quinn, P.J. The polyisoprenoid chain length influences the interaction of ubiquinones with phospholipid bilayers. Biochim. Et Biophys. Acta (Bba) Biomembr. 1982, 689, 363–369. [Google Scholar] [CrossRef]
- Luykx, D.M.A.M.; Peters, R.J.B.; van Ruth, S.M.; Bouwmeester, H. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food. J. Agric. Food Chem. 2008, 56, 8231–8247. [Google Scholar] [CrossRef]
- Castangia, I.; Nácher, A.; Caddeo, C.; Valenti, D.; Fadda, A.M.; Díez-Sales, O.; Ruiz-Saurí, A.; Manconi, M. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater. 2014, 10, 1292–1300. [Google Scholar] [CrossRef]
- Zhou, G.-P.; Troy, F.A. 2nd NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology 2005, 15, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, M.R.; Khosravi-Darani, K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 2008, 11, 833–844. [Google Scholar] [CrossRef]
- Karpickiy, V.I.; Koshkarev, I.M. Method for preparing polyprenols. RU2003123562A, 24 July 2003.
- Jozwiak, A.; Brzozowski, R.; Bujnowski, Z.; Chojnacki, T.; Swiezewska, E. Application of supercritical CO2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J. Lipid Res. 2013, 54, 2023–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Wang, Y.; Qian, H.; Zhao, Y.; Liu, B.; Fu, C. Polyprenols from the needles of Taxus chinensis var. mairei. Fitoterapia 2012, 83, 831–837. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Polyprenol | Molecular Formula | tR, min (UHPLC-DAD) | Relative Amount, % Abies sibirica L. | Mode of Identification | [M + Na]+ (HRMS) |
---|---|---|---|---|---|
P11 | C55H90O | 4.86 | 0.06 ± 0.01 | Standard/HRMS | 789.6867 |
P12 | C60H98O | 5.88 | 0.26 ± 0.04 | Standard/HRMS | 857.7503 |
P13 | C65H106O | 7.16 | 2.05 ± 0.04 | Standard/HRMS | 925.8134 |
P14 | C70H114O | 8.78 | 15.26 ± 0.78 | Standard/HRMS | 993.8779 |
P15 | C75H122O | 10.81 | 37.23 ± 0.56 | Standard/HRMS | 1061.9372 |
P16 | C80H130O | 13.25 | 29.11 ± 0.51 | Standard/HRMS | 1130.0017 |
P17 | C85H138O | 14.86 | 11.31 ± 0.01 | Standard/HRMS | 1198.0650 |
P18 | C90H146O | 15.98 | 3.36 ± 0.06 | Standard/HRMS | 1266.1274 |
P19 | C95H154O | 16.86 | 1.01 ± 0.04 | Standard/HRMS | 1334.1893 |
P20 | C100H162O | 17.59 | 0.31 ± 0.11 | Standard/HRMS | 1402.2577 |
Lipoid/lecithin Amount | Ethanol Amount | PolyprenolAmount | Water Amount | Appearance of the Sample | Stability after One Month | Liposome Structure |
---|---|---|---|---|---|---|
Lipoid P45/150mg | 50mg | 30mg | up to 5g | Semiliquid | Not stable | Oligolamellar |
Lipoid P45/150mg | 50mg | 30mg | up to 5g | Semiliquid | Not stable | Oligolamellar |
Lipoid P75/105mg | 50 mg | 30mg | up to 5g | Semiliquid | Not stable | Oligolamellar |
Lipoid P75/150 mg | 50mg | 30mg | up to 5g | Semiliquid | Not stable | Oligolamellar |
Lipoid Phosal 40 IP/1000mg | 0mg | 30mg | up to 5g | Liquid | Stable | Multilamellar |
Lipoid P45/500mg | 150mg | 30mg | up to 5g | Semiliquid | Stable | Oligolamellar |
Lipoid P45/1000mg | 200mg | 30mg | up to 5g | Dense jelly paste | Stable | Uni/Oligolamellar |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanaga, I.; Gubernator, J.; Nakurte, I.; Kletnieks, U.; Muceniece, R.; Jansone, B. Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules 2020, 25, 1801. https://doi.org/10.3390/molecules25081801
Vanaga I, Gubernator J, Nakurte I, Kletnieks U, Muceniece R, Jansone B. Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules. 2020; 25(8):1801. https://doi.org/10.3390/molecules25081801
Chicago/Turabian StyleVanaga, Ilona, Jerzy Gubernator, Ilva Nakurte, Ugis Kletnieks, Ruta Muceniece, and Baiba Jansone. 2020. "Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes" Molecules 25, no. 8: 1801. https://doi.org/10.3390/molecules25081801
APA StyleVanaga, I., Gubernator, J., Nakurte, I., Kletnieks, U., Muceniece, R., & Jansone, B. (2020). Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules, 25(8), 1801. https://doi.org/10.3390/molecules25081801