Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biochar Characterization
2.2. Effect of pH on Adsorption
2.3. Adsorption Kinetics
2.4. Adsorption Isotherm
3. Materials and Methods
3.1. Reagents
3.2. Biochar Preparation
3.3. Biochar Characterization
3.4. Adsorption Experiments
3.5. Effect of pH
3.6. Adsorption Kinetics
3.7. Adsorption Isotherm
3.8. Chromatographic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K.Y.H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 2014, 71, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; Galán, J.; García, J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014, 240, 443–453. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Buser, H.; Wa, C. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.V.; Ardais, A.P.; Costa, F.V.; Fontana, B.D.; Quadros, V.A.; Porciúncula, L.O.; Rosemberg, D.B. Different effects of caffeine on behavioral neurophenotypes of two zebrafish populations. Pharmacol. Biochem. Behav. 2018, 165, 1–8. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; García Lovera, R.; Escalona, N.; Sepúlveda, C.; Sotelo, J.L.; García, J. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem. Eng. J. 2015, 279, 788–798. [Google Scholar] [CrossRef]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar] [CrossRef]
- Martínez-Costa, J.I.; Leyva-Ramos, R.; Padilla-Ortega, E. Sorption of diclofenac from aqueous solution on an organobentonite and adsorption of cadmium on organobentonite saturated with diclofenac. Clays Clay Miner. 2018, 66, 515–528. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Arrubla-Vélez, J.P.; Cubillos-Vargas, J.A.; Ramirez-Vargas, C.A.; Arredondo-Gonzalez, J.A.; Arias-Isaza, C.A.; Paredes-Cuervo, D. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: Septic tank–up flow anaerobic filter. Ingeniería e Investigación 2016, 36, 70–78. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Cazetta, A.L.; de Souza, P.S.C.; Spessato, L.; Silva, T.L.; Almeida, V.C. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Rouissi, T.; Kaur Brar, S.; Verma, M.; Surampalli, R.Y. An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics. Bioresour. Technol. 2018, 249, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Portinho, R.; Zanella, O.; Féris, L.A. Grape stalk application for caffeine removal through adsorption. J. Environ. Manag. 2017, 202, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; Gómez, J.M.; García, J. Removal of caffeine from pharmaceutical wastewater by adsorption: Influence of NOM, textural and chemical properties of the adsorbent. Environ. Technol. 2016, 37, 1618–1630. [Google Scholar] [CrossRef]
- Malhotra, M.; Suresh, S.; Garg, A. Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: Adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 2018, 25, 32210–32220. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, Z.; Sun, Z.; Zhu, H. Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes. Pol. J. Environ. 2017, 26, 87–95. [Google Scholar] [CrossRef]
- Espina de Franco, A.M.; de Carvalho, C.B.; Marques Bonetto, M.; de Pelegrini Soares, R.; Amarales Féris, L. Diclofenac removal from water by adsorption using activated carbon in batch mode and fi xed-bed column: Isotherms, thermodynamic study and breakthrough curves modeling. J. Clean. Prod. 2018, 181, 145–154. [Google Scholar] [CrossRef]
- Nam, S.; Jung, C.; Li, H.; Yu, M.; Flora, J.R.V.; Boateng, L.K.; Her, N.; Zoh, K.; Yoon, Y. Chemosphere Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere 2015, 136, 20–26. [Google Scholar] [CrossRef]
- Ptaszkowska-Koniarz, M.; Goscianska, J.; Pietrzak, R. Synthesis of carbon xerogels modified with amine groups and copper for efficient adsorption of caffeine. Chem. Eng. J. 2018, 345, 13–21. [Google Scholar] [CrossRef]
- IBI. I.B.I. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Canandaigua, NY, USA, 2015. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management. Science and Technology; Routledge: London, UK, 2009; pp. 16–17. [Google Scholar]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Chaukura, N.; Gwenzi, W.; Tavengwa, N.; Manyuchi, M.M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environ. Dev. 2016, 19, 84–89. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef]
- dos Santos Lins, P.V.; Henrique, D.C.; Ide, A.H.; de Paiva e Silva Zanta, C.L.; Meili, L. Evaluation of caffeine adsorption by MgAl-LDH/biochar composite. Environ. Sci. Pollut. Res. 2019, 26, 31804–31811. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Katsouromalli, A.; Pashalidis, I. Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions. J. Mol. Liq. 2020, 304, 112661. [Google Scholar] [CrossRef]
- de Souza dos Santos, G.E.; Ide, A.H.; Duarte, J.L.S.; McKay, G.; Silva, A.O.S.; Meili, L. Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar. Powder Technol. 2020, 364, 229–240. [Google Scholar] [CrossRef]
- Bagheri, A.; Abu-Danso, E.; Iqbal, J.; Bhatnagar, A. Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 7318–7327. [Google Scholar] [CrossRef] [Green Version]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.D.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; et al. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Aller, M.F. Biochar properties: Transport, fate, and impact. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1183–1296. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Castellanos, L.J.; Blanco-Tirado, C.; Hinestroza, J.P.; Combariza, M.Y. In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 2012, 19, 1933–1943. [Google Scholar] [CrossRef]
- Escalante, H.; Guzmán, C.; Castro, L. Anaerobic digestion of fique bagasse: An energy alternative. Dyna 2014, 81, 74–85. [Google Scholar] [CrossRef]
- Quintero, M.; Castro, L.; Ortiz, C.; Guzmán, C.; Escalante, H. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour. Technol. 2012, 108, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Tsai, W.; Liu, S.; Chen, H.; Chang, Y.; Tsai, Y. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Giraldo, L.; Moreno-Piraján, J.C. Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fi que bagasse biochars. Data Br. 2019, 25, 104111. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Moreno-Piraján, J.C.; Giraldo, L.; Rodríguez-Estupiñan, P. Caffeine adsorption by fique bagasse biochar produced at various pyrolysis temperatures. Orient. J. Chem. 2019, 35, 535–546. [Google Scholar] [CrossRef]
- Ovalle-Serrano, S.A.; Blanco-Tirado, C.; Combariza, M.Y. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose 2018, 25, 151–165. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, R. Bioresource Technology Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Z.; Chen, B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 2016, 6, 22644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Sinha, S.; Jhalani, A.; Ravi, M.R.; Ray, A. Modelling of pyrolysis in wood: A review. SESI J. 2000, 10, 41–62. [Google Scholar]
- Alahabadi, A.; Hosseini-Bandegharaei, A.; Moussavi, G.; Amin, B.; Rastegar, A.; Karimi-Sani, H.; Fattahi, M.; Miri, M. Comparing adsorption properties of NH4Cl-modified activated carbon towards chlortetracycline antibiotic with those of commercial activated carbon. J. Mol. Liq. 2017, 232, 367–381. [Google Scholar] [CrossRef]
- Turk Sekulić, M.; Pap, S.; Stojanović, Z.; Bošković, N.; Radonić, J.; Šolević Knudsen, T. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Sci. Total Environ. 2018, 613–614, 736–750. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef]
- Jang, H.M.; Yoo, S.; Choi, Y.K.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018, 259, 24–31. [Google Scholar] [CrossRef]
- Ngeno, E.C.; Orata, F.; Danstone Baraza, L.; Odhiambo Shikuku, V.; Jemutai Kimosop, S. Adsorption of caffeine and ciprofloxacin onto pyrolitically derived water hyacinth biochar: Isothermal, kinetic and thermodynamic studies. J. Chem. Chem. Eng. 2016, 10, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Galhetas, M.; Mestre, A.S.; Pinto, M.L.; Gulyurtlu, I.; Lopes, H.; Carvalho, A.P. Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid Interface Sci. 2014, 433, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Couto, O.M.; Matos, I.; da Fonseca, I.M.; Arroyo, P.A.; da Silva, E.A.; de Barros, M.A.S.D. Effect of solution pH and influence of water hardness on caffeine adsorption onto activated carbons. Can. J. Chem. Eng. 2015, 93, 68–77. [Google Scholar] [CrossRef]
- Álvarez, S.; Ribeiro, R.S.; Gomes, H.T.; Sotelo, J.L.; García, J. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem. Eng. Res. Des. 2015, 95, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3973–3993. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Am. Chem. Soc. 1958, 63, 1024–1025. [Google Scholar] [CrossRef]
- Abdul, G.; Zhu, X.; Chen, B. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem. Eng. J. 2017, 319, 9–20. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Martínez, K.; Guerrero-Medina, K.J.; Román, F.R.; Hernández-Maldonado, A.J. Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions. Chem. Eng. J. 2015, 264, 152–164. [Google Scholar] [CrossRef]
- Chung, Y.T.; Wang, C.K.; Wang, K.S.; Huang, S.Y.; Chang, S.H. Facile modification of graphite sheet by novel electrochemical exfoliation/oxidant method and its adsorption of caffeine from water. J. Taiwan Inst. Chem. Eng. 2017, 80, 747–753. [Google Scholar] [CrossRef]
- Vedenyapina, M.D.; Borisova, D.A.; Simakova, A.P.; Proshina, L.P.; Vedenyapin, A.A. Adsorption of diclofenac sodium from aqueous solutions on expanded graphite. Solid Fuel Chem. 2013, 47, 60–64. [Google Scholar] [CrossRef]
- Saucier, C.; Adebayo, M.A.; Lima, E.C.; Catalu, R.; Thue, P.S.; Prola, L.D.T.; Machado, F.M.; Pavan, F.A.; Dotto, G.L. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J. Hazard. Mater. 2015, 289, 18–27. [Google Scholar] [CrossRef]
- Wei, H.; Deng, S.; Huang, Q.; Nie, Y.; Wang, B.; Huang, J.; Yu, G. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013, 47, 4139–4147. [Google Scholar] [CrossRef]
- Naghipour, D.; Hoseinzadeh, L.; Taghavi, K.; Jaafari, J. Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree. Data Br. 2018, 18, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-0-470-61637-6. [Google Scholar]
- ASTM International. ASTM D7582-15 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Creamer, A.E.; Gao, B.; Zhang, M. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem. Eng. J. 2014, 249, 174–179. [Google Scholar] [CrossRef]
- Yakout, S.M. Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediat. J. 2015, 19, 171–182. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Mohammad, A.-W.; et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids, Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Adsorption in solution. Phys. Chem. Soc. 1906, 40, 1361–1368. [Google Scholar]
Sample Availability: Not available. |
Sample | SBET (m2 g−1) | pH a | Elemental Analysis (%) | Proximate Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O b | S | N | H | Fixed Carbon | Volatile Matter | Ash Content | |||
FB650-2 | 0.8420 | 11.40 | 52.207 | 44.973 | nd | 1.7870 | 1.0328 | 66.82 | 4.120 | 29.06 |
FB750-2 | 1.937 | 11.24 | 51.061 | 46.262 | nd | 1.7631 | 0.9136 | 66.14 | 3.020 | 30.84 |
FB850-2 | 5.351 | 11.38 | 51.242 | 46.390 | nd | 1.4967 | 0.8718 | 67.88 | 2.160 | 29.96 |
FB650-3 | 2.162 | 11.14 | 54.127 | 42.810 | nd | 1.8955 | 1.1672 | 72.40 | 0.9800 | 26.62 |
FB750-3 | 8.432 | 11.74 | 53.539 | 43.573 | nd | 1.9080 | 0.9794 | 68.96 | 2.190 | 28.85 |
FB850-3 | 211.7 | 11.35 | 43.644 | 54.340 | nd | 1.1457 | 0.8696 | 61.42 | 2.900 | 35.68 |
Model | Parameter | Caffeine | Diclofenac |
---|---|---|---|
Qe exp (mg g−1) | 4.73 | 4.07 | |
Pseudo-first-order | Qe cal (mg g−1) | 4.94 | 4.25 |
k (1 min−1) | 0.000800 | 0.00300 | |
R2 | 0.990 | 0.980 | |
Δq (%) | 7.11 | 14.5 | |
ARE (%) | 3.09 | 8.26 | |
χ2 | 0.750 | 7.69 | |
HYBRID | 0.220 | 2.40 | |
Pseudo-second-order | Qe cal (mg g−1) | 5.02 | 4.39 |
k2 (1 min−1) | 0.0000600 | 0.000800 | |
R2 | 0.910 | 0.990 | |
Δq (%) | 7.36 | 11.1 | |
ARE (%) | 4.21 | 5.40 | |
χ2 | 0.890 | 3.67 | |
HYBRID | 0.410 | 1.80 | |
Elovich | Qe cal (mg g−1) | 5.10 | 4.55 |
α (mg g−1 min−1) | 0.00700 | 0.0390 | |
β (g mg−1) | 0.240 | 0.860 | |
R2 | 0.810 | 0.950 | |
Δq (%) | 7.57 | 6.82 | |
ARE (%) | 4.76 | 2.70 | |
χ2 | 0.00800 | 0.100 | |
HYBRID | 0.530 | 0.640 |
Sample | Freundlich | Langmuir | Redlich–Peterson | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kf (L g−1) | n | R2 | Qmax (mg g−1) | K (L mg−1) | R2 | KRP (L g−1) | aR (L mg−1) | B | R2 | ||
FB650-2 | CFN | 0.152 | 0.19 | 0.86 | 0.4465 | 0.0607 | 0.95 | 0.0218 | 0.0340 | 1.07 | 0.96 |
FB750-2 | 0.0436 | 0.45 | 0.97 | 0.6143 | 0.0140 | 0.96 | 0.0684 | 1.27 | 0.584 | 0.97 | |
FB850-2 | 0.108 | 0.05 | 0.83 | 1.711 | 0.288 | 0.93 | 24.6 | 49.7 | 0.712 | 0.93 | |
FB650-3 | 0.0182 | 0.60 | 0.95 | 0.7619 | 0.00630 | 0.93 | 0.374 | 20.1 | 0.402 | 0.95 | |
FB750-3 | 0.0902 | 0.46 | 0.89 | 1.317 | 0.0145 | 0.95 | 0.0487 | 0.255 | 0.660 | 0.91 | |
FB850-3 | 15.3 | 0.26 | 0.82 | 40.20 | 0.216 | 0.85 | 9.02 | 1.04 | 0.165 | 0.85 | |
FB650-2 | DCF | 0.0442 | 0.28 | 0.98 | 0.1802 | 0.0124 | 0.92 | 2.79 | 62.9 | 0.716 | 0.98 |
FB750-2 | 0.0664 | 0.19 | 0.97 | 0.1704 | 0.0209 | 0.98 | 0.0317 | 0.270 | 0.921 | 0.99 | |
FB850-2 | 0.0292 | 0.52 | 0.93 | 0.4643 | 0.00910 | 0.93 | 0.100 | 2.97 | 0.506 | 0.93 | |
FB650-3 | 0.0755 | 0.25 | 0.84 | 0.2583 | 0.0211 | 0.96 | 0.0139 | 0.0179 | 1.23 | 0.99 | |
FB750-3 | 0.0868 | 0.27 | 0.94 | 0.3185 | 0.0810 | 0.89 | 0.909 | 10.2 | 0.738 | 0.94 | |
FB850-3 | 1.90 | 0.28 | 0.91 | 5.402 | 1.89 | 0.88 | 6.93 | 2.85 | 0.781 | 0.92 |
Adsorbent | Qmax (mg g−1) | pH | Temperature (°C) | Ref |
---|---|---|---|---|
Caffeine | ||||
Carbon fibers from pineapple plant leaves | 155.5 | 5.8 | 25 | [11] |
Carbon xerogel (CX) modified with (CH3COO)2Cu and ethylenediamine | 118.0 | 2.0 | 25 | [19] |
CX modified with (CH3COO)2Cu | 107.0 | |||
Peach carbon | 250.0 | --- | 30 | [6] |
Oxidized peach carbon | 126.0 | |||
Helium peach carbon | 260.0 | |||
F-400 granular activated carbon | 190.9 | 6.3 | 23 | [3] |
Grape stalk | 89.20 | 2.0 | Room temperature | [13] |
Grape stalk modified by phosphoric acid | 129.6 | 2.0 | ||
Activated carbon from grape stalk | 916.7 | 4.0 | ||
Carbon xerogel (CX) | 79.10 | -- | 30 | [54] |
CX in nitric acid | 50.90 | |||
CX in urea solution | 185.4 | |||
CX in concentrated sulfuric acid | 52.60 | |||
Graphite sheet modified by an electrochemical exfoliation/oxidant process | 1000 | -- | -- | [60] |
Santa Barbara amorphous-15 (SBA-15) mesoporous silica | 0.2300 | Neutral pH | Ambiental temperature | [59] |
SBA-15 modified with Co2+ | 0.07000 | |||
SBA-15 modified with Ni2+ | 0.01000 | |||
SBA-15 modified with Cu2+ | 0.08000 | |||
Diclofenac | ||||
F-400 Granular activated carbon | 6.3 | 23 | ||
Peach carbon | 200.0 | --- | 30 | [6] |
Oxidized peach carbon | 198.0 | |||
Helium peach carbon | 170.0 | |||
Pine wood biochar | 0.5263 | 6.5 | 25 | [12] |
Pig manure biochar | 12.50 | |||
Organobentonite | 500.5 | 7.0 | 25 | [8] |
Expanded graphite | 330.0 | -- | Room temperature | [61] |
Activated carbon from cocoa | 63.47 | 7.0 | 25 | [62] |
Regenerable granular carbon nanotubes/alumina hybrid | 31.54 | 6.0 | --- | [63] |
Granular activated carbon | 36.23 | 5.5 | 25 | [17] |
Multi-walled carbon nanotubes | 19.90 | 6.0 | 25 | [16] |
Graphene oxide | 500.0 | 7.0 | 20 | [18] |
Commercial activated carbon Tea waste carbon activated with: K2CO3 KOH H2SO4 | 136.0 91.20 81.96 74.60 | 6.5 | 30 | [15] |
Activated carbon derived from pine tree | 54.67 | 7.0 | Room temperature | [64] |
Carbon xerogel (CX) | 58.50 | -- | 30 | [54] |
CX in nitric acid | 54.00 | |||
CXN in urea solution | 140.2 | |||
CX in concentrated sulfuric acid | 78.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Navarro, Y.M.; Giraldo, L.; Moreno-Piraján, J.C. Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution. Molecules 2020, 25, 1849. https://doi.org/10.3390/molecules25081849
Correa-Navarro YM, Giraldo L, Moreno-Piraján JC. Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution. Molecules. 2020; 25(8):1849. https://doi.org/10.3390/molecules25081849
Chicago/Turabian StyleCorrea-Navarro, Yaned Milena, Liliana Giraldo, and Juan Carlos Moreno-Piraján. 2020. "Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution" Molecules 25, no. 8: 1849. https://doi.org/10.3390/molecules25081849
APA StyleCorrea-Navarro, Y. M., Giraldo, L., & Moreno-Piraján, J. C. (2020). Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution. Molecules, 25(8), 1849. https://doi.org/10.3390/molecules25081849