Traps and Pitfalls—Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways
Abstract
:1. Introduction
2. Unspecific Reactions
2.1. S-Conjugation
2.2. O-Conjugation
2.3. Acid-Induced Rearrangement
2.4. Heat-Induced Rearrangement
3. Where Do the Reactions Happen?
4. What Are the Underlying Mechanisms and Avoiding Strategies?
4.1. S-Conjugation
4.2. O-Conjugation
4.3. Acid-Induced Rearrangement
4.4. Heat-Induced Rearrangement
5. How Can Unspecific Enzyme Products Be Identified?
5.1. S-Conjugation
5.2. O-Conjugation
5.3. Acid-Induced Rearrangement
5.4. Heat-Induced Rearrangement
6. How are Unspecific Reactions Prevented in the Natural Situation?
7. Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Cankar, K.; van Houwelingen, A.; Bosch, D.; Sonke, T.; Bouwmeester, H.; Beekwilder, J. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 2011, 585, 178–182. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2011, 2, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, M.C.Y.; Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2006, 2, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Ro, D.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.Y.; Eachus, R.A.; Trieu, W.; Ro, D.-K.; Keasling, J.D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 2007, 3, 274–277. [Google Scholar] [CrossRef]
- Yu, F.; Okamoto, S.; Harada, H.; Yamasaki, K.; Misawa, N.; Utsumi, R. Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cell. Mol. Life Sci. 2011, 68, 1033–1040. [Google Scholar] [CrossRef]
- Liu, Q.; Majdi, M.; Cankar, K.; Goedbloed, M.; Charnikhova, T.; Verstappen, F.W.A.; de Vos, R.C.H.; Beekwilder, J.; van der Krol, S.; Bouwmeester, H.J. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Liu, Q.; Manzano, D.; Tanić, N.; Pesic, M.; Bankovic, J.; Pateraki, I.; Ricard, L.; Ferrer, A.; de Vos, R.; van de Krol, S.; et al. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 2014, 23, 145–153. [Google Scholar] [CrossRef]
- Ikezawa, N.; Göpfert, J.C.; Nguyen, D.T.; Kim, S.U.; O’Maille, P.E.; Spring, O.; Ro, D.K. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J. Biol. Chem. 2011, 286, 21601–21611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.T.; Göpfert, J.C.; Ikezawa, N.; MacNevin, G.; Kathiresan, M.; Conrad, J.; Spring, O.; Ro, D.K. Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J. Biol. Chem. 2010, 285, 16588–16598. [Google Scholar] [CrossRef] [Green Version]
- Göpfert, J.C.; Macnevin, G.; Ro, D.-K.; Spring, O. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol. 2009, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Beyraghdar Kashkooli, A.; Manzano, D.; Pateraki, I.; Richard, L.; Kolkman, P.; Lucas, M.F.; Guallar, V.; de Vos, R.C.H.; Franssen, M.C.R.; et al. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat. Commun. 2018, 9, 4657. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.; Schmauder, K.; Pateraki, I.; Spring, O. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6. ACS Chem. Biol. 2018, 13, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.; Klaiber, I.; Conrad, J.; Bersch, A.; Pateraki, I.; Ro, D.-K.; Spring, O. Characterization of CYP71AX36 from Sunflower (Helianthus annuus L., Asteraceae). Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Eljounaidi, K.; Cankar, K.; Comino, C.; Moglia, A.; Hehn, A.; Bourgaud, F.; Bouwmeester, H.; Menin, B.; Lanteri, S.; Beekwilder, J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci. 2014, 223, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, P.; Zhou, F.; Erban, A.; Karcher, D.; Kopka, J.; Bock, R. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 2016, 5, e13664. [Google Scholar] [CrossRef]
- King, B.C.; Vavitsas, K.; Ikram, N.K.B.K.; Schrøder, J.; Scharff, L.B.; Hamberger, B.; Jensen, P.E.; Simonsen, H.T. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens. Sci. Rep. 2016, 6, 25030. [Google Scholar] [CrossRef]
- Khairul Ikram, N.K.B.; Beyraghdar Kashkooli, A.; Peramuna, A.V.; van der Krol, A.R.; Bouwmeester, H.; Simonsen, H.T. Stable Production of the Antimalarial Drug Artemisinin in the Moss Physcomitrella patens. Front. Bioeng. Biotechnol. 2017, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Nguyen, T.D.; MacNevin, G.; Ro, D.K. De novo synthesis of high-value plant sesquiterpenoids in yeast. In Methods in Enzymology; Elsevier Inc.: San Diego, CA, USA, 2012; Volume 517, ISBN 9780124046344. [Google Scholar]
- Pateraki, I.; Heskes, A.M.; Hamberger, B. Cytochromes p450 for terpene functionalisation and metabolic engineering. Adv. Biochem. Eng. Biotechnol. 2015, 148, 107–139. [Google Scholar] [CrossRef]
- Adio, A. Germacrenes A–E and related compounds: Thermal, photochemical and acid induced transannular cyclizations. Tetrahedron 2009, 65, 1533–1552. [Google Scholar] [CrossRef]
- Reijnders, P.J.M.; van Putten, R.G.; de Haan, J.W.; Koning, H.N.; Buck, H.M. Conformational dependence in the photochemistry of (E,E)-germacra-1(10),4,7(11)-triene. Recl. des Trav. Chim. des Pays-Bas 1980, 99, 67–69. [Google Scholar] [CrossRef] [Green Version]
- Peijnenburg, W.J.G.M.; Dormans, G.J.M.; Buck, H.M. Quantumchemical calculations on the photochemistry of germacrene and germacrol. The exclusive role of the exocyclic double bond isomerization. Tetrahedron 1988, 44, 2339–2350. [Google Scholar] [CrossRef]
- Sy, L.-K.; Brown, G.D. The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. Tetrahedron 2002, 58, 897–908. [Google Scholar] [CrossRef]
- Frey, M.; Klaiber, I.; Conrad, J.; Spring, O. CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry 2020. submitted. [Google Scholar]
- Ramirez, A.M.; Saillard, N.; Yang, T.; Franssen, M.C.R.; Bouwmeester, H.J.; Jongsma, M.A. Biosynthesis of Sesquiterpene Lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- van Herpen, T.W.J.M.; Cankar, K.; Nogueira, M.; Bosch, D.; Bouwmeester, H.J.; Beekwilder, J. Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Andersen, T.B.; Martinez-Swatson, K.A.; Rasmussen, S.A.; Boughton, B.A.; Jørgensen, K.; Andersen-Ranberg, J.; Nyberg, N.; Christensen, S.B.; Simonsen, H.T. Localization and in-Vivo Characterization of Thapsia garganica CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis. Plant Physiol. 2017, 174, 56–72. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, J.-W.; Franssen, M.C.R.; De Groot, A.; Konig, W.A.; Bouwmeester, H.J. (+)-Germacrene A biosynthesis: The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol. 1998, 117, 1381–1392. [Google Scholar] [CrossRef] [Green Version]
- Cope, A.C.; Hardy, E.M. The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System1. J. Am. Chem. Soc. 1940, 62, 441–444. [Google Scholar] [CrossRef]
- Andersen, T.; Cozzi, F.; Simonsen, H. Optimization of Biochemical Screening Methods for Volatile and Unstable Sesquiterpenoids Using HS-SPME-GC-MS. Chromatography 2015, 2, 277–292. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, J.-W.; Franssen, M.C.R.; Joerink, M.; De Groot, A.; Bouwmeester, H.J. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol. 2002, 129, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupchan, S.M.; Fessler, D.C.; Eakin, M.A.; Giacobbe, T.J. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science 1970, 168, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Michael, A. Ueber die Addition von Natriumacetessig- und Natriummalonsaureathern zu den Aethern ungesattigter Sauren. J. für Prakt. Chemie 1887, 35, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Cavallito, C.J.; Haskell, T.H. The Mechanism of Action of Antibiotics. The Reaction of Unsaturated Lactones with Cysteine and Related Compounds. J. Am. Chem. Soc. 1945, 67, 1991. [Google Scholar] [CrossRef]
- Lyss, G.; Schmidt, T.J.; Merfort, I.; Pahl, H.L. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-κB. Biol. Chem. 1997, 378, 951–962. [Google Scholar] [CrossRef]
- Schmidt, T.J. Helenanolide-type sesquiterpene lactones-III. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules. Bioorganic Med. Chem. 1997, 5, 645–653. [Google Scholar] [CrossRef]
- Gou, J.; Hao, F.; Kwon, M.; Chen, F.; Li, C.; Liu, C.; Ro, D.-K.; Tang, H.; Zhang, Y. Discovery of a non-stereoselective cytochrome P450 catalyzing either 8α- or 8β-hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. Plant J. 2018, 93, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Pickel, B.; Drew, D.P.; Manczak, T.; Weitzel, C.; Simonsen, H.T.; Ro, D.-K. Identification and characterization of a kunzeaol synthase from Thapsia garganica: Implications for the biosynthesis of the pharmaceutical thapsigargin. Biochem. J. 2012, 448, 261–271. [Google Scholar] [CrossRef]
Group | Type | Combinations | Modification | Mass | Functional Group | Reaction Type | Cause | Avoiding Strategies | References |
---|---|---|---|---|---|---|---|---|---|
1. S-conjugation | a | f–i | STL-GSH | +307 | α-methylene-γ-lactone | Michael-type addition, or GST reaction | Plant cell detoxification | Targeting different subcellular localizations | [7,8,13] |
b | f–i | STL-Cys | +121 | [7,8,13] | |||||
2. O-conjugation | c | STLOH-OGlc2 | +324 | acid-group | Esterification or | Plant cell detoxification, presumably enzymatic | Targeting different subcellular localizations | [18,28] | |
hydroxy- group | etherification | [29] | |||||||
d | STL-OGlc2 | ||||||||
3. Acid | e | a–b | STL**, Δ3→4 | ±0 | 1,5-diene (Germa- crene) | Acid-induced rearrangement | pH in culture media, cells, chromatography | Buffering of yeast media, pH control of chromatography system, choice of SPME fibers | [9,10,13] |
f | a–b | STL**, Δ4→15 | [9,10,13] | ||||||
g | a–b | STL**, Δ4→5 | [9,10,13] | ||||||
h | a–b | STL**, Δ5→6 | [13] | ||||||
i | STL**-OH | +18 | [9,10] | ||||||
4. Heat | k | STL* | ±0 | 1,5-diene (Germa- crene) | Cope rearrangement (heat-induced) | GC-MS Analysis | Reduction of heat in GC-MS inlet | [11,32,33] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, M. Traps and Pitfalls—Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules 2020, 25, 1935. https://doi.org/10.3390/molecules25081935
Frey M. Traps and Pitfalls—Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules. 2020; 25(8):1935. https://doi.org/10.3390/molecules25081935
Chicago/Turabian StyleFrey, Maximilian. 2020. "Traps and Pitfalls—Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways" Molecules 25, no. 8: 1935. https://doi.org/10.3390/molecules25081935
APA StyleFrey, M. (2020). Traps and Pitfalls—Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules, 25(8), 1935. https://doi.org/10.3390/molecules25081935